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t. The simple max-
ut problem is as follows: given a graph,�nd a partition of its vertex set into two disjoint sets, su
h that thenumber of edges having one endpoint in ea
h set is as large as possible.A split graph is a graph whose vertex set admits a partition into a stableset and a 
lique. The simple max-
ut de
ision problem is known to beNP-
omplete for split graphs. An indi�eren
e graph is the interse
tiongraph of a set of unit intervals of the real line. We show that the simplemax-
ut problem 
an be solved in linear time for a graph that is bothsplit and indi�eren
e. Moreover, we also show that for ea
h 
onstantq, the simple max-
ut problem 
an be solved in polynomial time for(q; q� 4)-graphs. These are graphs for whi
h no set of at most q verti
esindu
es more than q � 4 distin
t P4's.AMS 
lassi�
ation: 68Q25, 05C85, 05C17.Keywords: analysis of algorithms and problem 
omplexity, eÆ
ient algo-rithms, graph de
omposition algorithms, max-
ut problem.1 Introdu
tionThe maximum 
ut problem (or the maximum bipartite subgraph problem)asks for a bipartition of the graph (with edge weights) with a total weight as largeas possible. In this paper we 
onsider only the simple 
ase, i.e., all edges in thegraph have weight one. Then the obje
tive of this simple max-
ut problem isto delete a minimum number of edges su
h that the resulting graph is bipartite.Making a graph bipartite with few edge deletions has many appli
ations [26℄. Avery re
ent one is found in the emerging �eld of SNP (single nu
leotide polymor-phism) analysis in 
omputational mole
ular biology, e.g., see [11, 27℄. Aiming foreÆ
ient algorithms, we only 
onsider the unweighted 
ase sin
e the 
lasses of
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graphs we 
onsider in this paper 
ontain all 
omplete graphs and the (weighted)maximum 
ut problem is NP-
omplete for every 
lass of graphs 
ontaining all
omplete graphs [21, 26℄.As simple max-
ut is NP-
omplete in general, there are basi
ally twolines of resear
h to 
ope with its 
omputational hardness. First, one may studypolynomial-time approximation algorithms (it is known to be approximablewithin 1.1383, see [13℄) or try to develop exa
t (exponential-time) algorithms(see [15℄ for an algorithm running in time 2m=3 �mO(1), where m is the numberof edges in the graph). Approximation and exa
t algorithms both have theirdrawba
ks, i.e., non-optimality of the gained solution or poor running time evenfor relatively small problem instan
e sizes. Hen
e, the se
ond line of resear
h|aspursued in this paper|is to determine and analyze spe
ial graph stru
tures thatmake it possible to solve the problem eÆ
iently and optimally. This leads to thestudy of spe
ial graph 
lasses. (Have a look at the 
lassi
s [14, 9℄ for general infor-mation on numerous graph 
lasses.) For example, it was shown that the simplemax-
ut problem remains NP-
omplete for 
obipartite graphs, split graphs, andgraphs with 
hromati
 number three [6℄. On the positive side, the problem 
anbe eÆ
iently solved for 
ographs [6℄, linegraphs [1℄, planar graphs [24, 16℄, andfor graphs with bounded treewidth [29℄.In this paper we 
onsider two 
lasses of graphs, both of whi
h possess ni
ede
omposition properties whi
h we make use of in the algorithms for simplemax-
ut to be des
ribed. Also, both graph 
lasses we study are related tosplit graphs. An indi�eren
e graph is the interse
tion graph of a set of unitintervals of the real line. (See [23℄ for more information on interse
tion graphsand their appli
ations in biology and other �elds.) A split graph is a graph whosevertex set admits a partition into a stable set and a 
lique. Ortiz, Ma
ulan,and Szwar
�ter [25℄ 
hara
terized graphs that are both split and indi�eren
ein terms of their maximal 
liques, and used this 
hara
terization to edge-
olourthose graphs in polynomial time. First, we show that this 
hara
terization alsoleads to a linear-time solution for the simple max-
ut problem for graphs thatare both split and indi�eren
e.Se
ond, we study the 
lass of (q; q � 4)-graphs (also known as graphs withfew P4's [4℄ and introdu
ed in [2℄). These are graphs for whi
h no set of atmost q verti
es indu
es more than q� 4 distin
t P4's. (A P4 is a path with fourverti
es.) In this terminology, the 
ographs are exa
tly the (4; 0)-graphs. The
lass of (5; 1)-graphs are 
alled P4-sparse graphs. Jamison and Olariu [20℄ showedthat (q; q � 4)-graphs allow a ni
e de
omposition tree similar to 
ographs [20℄.This de
omposition 
an be used to �nd fast solutions for several in general NP-
omplete problems (see, e.g., [3, 22℄). Also using this de
omposition, we show thatthe simple max-
ut problem 
an be solved in polynomial time for (q; q � 4)-graphs for every 
onstant q.
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2 PreliminariesIn this paper, G denotes a simple, undire
ted, �nite, 
onne
ted graph, and V (G)and E(G) are respe
tively the vertex and edge sets of G. The vertex-set size isdenoted by jV (G)j = N , and KN denotes the 
omplete graph on N verti
es. Astable set (or independent set) is a set of verti
es pairwise non-adja
ent in G.A 
lique is a set of verti
es pairwise adja
ent in G. A maximal 
lique of G is a
lique not properly 
ontained in any other 
lique. A subgraph of G is a graphH with V (H) � V (G) and E(H) � E(G). For X � V (G), we denote by G[X ℄the subgraph indu
ed by X , that is, V (G[X ℄) = X and E(G[X ℄) 
onsists of thoseedges of E(G) having both ends in X .Given nonempty subsets X and Y of V (G), the symbol (X;Y ) denotes thesubset fxy 2 E(G) : x 2 X; y 2 Y g of E(G). A 
ut K of a graph G is the set ofedges (S; V (G) n S), de�ned by a subset S � V (G). We often write S instead ofV (G) nS. We also write Æ(S) for the set of edges with exa
tly one endpoint in S(and the other endpoint in V (G)nS). By jKj we denote the number of edges in the
ut K and `(K) is the number of edges in E(G)nK, i.e., the number of edges thatare lost by the 
ut K. A max-
ut K is a 
ut su
h that jKj is as large as possible.The (simple) max-
ut problem 
onsiders the 
omputation of two 
omplementaryparameters of a graphG:m
(G) = maxfjKj : K is a 
ut of Gg = maxS�V jÆ(S)j,the maximum number of edges in a 
ut of G; and `(G) = jE(G)j � m
(G),the minimum number of edges lost by a 
ut of G (making the remaining graphbipartite). Instead of 
al
ulatingm
(G) dire
tly it is sometimes more 
onvenientto 
al
ulate �rst, for i = 1; : : : ; n, the values m
(G; i) = maxS�V;jSj=i jÆ(S)j.In the sequel, the following observations will be helpful.Remark 1 For KN , the 
omplete graph on N verti
es, we have:{ If (S; S) is a max-
ut of KN , then jSj = bN2 
;{ m
(KN ) = bN2 
 � dN2 e.We say that a max-
ut in a 
omplete graph is a balan
ed 
ut.Remark 2 Let H be a subgraph of a graph G and let K be a 
ut of G. If`(K) = `(H), then K is a max-
ut of G.Proof. Sin
e H is a subgraph of G, any 
ut N of G satis�es `(N ) � `(H) = `(K).Hen
e K is a 
ut of minimum loss in G, in other words, K is a max-
ut of G.Remark 3 Let jV (G)j = N and let S be a subset of V (G) satisfying:{ jSj = bN2 
;{ every vertex of S is adja
ent to every vertex of S.Then (S; S) is a max-
ut of G.
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Proof. Clearly the 
ut (S; S) has bN2 
 � dN2 e edges, the maximum possible size ofa 
ut in G.The union of two graphs G1 and G2, denoted by G1 [G2, is the graph su
hthat V (G1 [G2) = V (G1) [ V (G2) and E(G1 [G2) = E(G1) [ E(G2). By wayof 
ontrast, G1 nG2 denotes the subgraph of G1 indu
ed by V (G1)nV (G2). The(disjoint) sum of two graphs G1 and G2 makes every vertex of G1 adja
ent toevery vertex of G2.3 Linear-time solution for split-indi�eren
e graphsSome preliminariesAn interval graph is the interse
tion graph of a set of intervals of the real line(
f. [9, 23℄ for general expositions). In 
ase of unit intervals the graph is 
alledunit interval, proper interval, or indi�eren
e graph. We shall adopt the lattername, to be 
onsistent with the terminology of indi�eren
e orders, de�ned next.(For a re
ent proof that the 
lass of unit interval graphs 
oin
ides with that ofthe proper interval graphs, see [8℄.) Indi�eren
e graphs 
an be 
hara
terized asthose interval graphs without an indu
ed 
law, (i.e., a K1;3). Indi�eren
e graphs
an also be 
hara
terized by a linear order: their verti
es 
an be linearly orderedso that the verti
es 
ontained in the same maximal 
liques are 
onse
utive [28℄.We 
all su
h an order an indi�eren
e order.A split graph is a graph whose vertex set 
an be partitioned into a stable setand a 
lique. A split-indi�eren
e graph is a graph that is both split and indi�er-en
e. We shall use the following 
hara
terization of split-indi�eren
e graphs interms of their maximal 
liques due to [25℄.Theorem 1. Let G be a 
onne
ted graph. Then G is a split-indi�eren
e graphif and only if{ G = KN , or{ G = Km [Kn, where n � m > 1, and Km nKn = K1, or{ G = Km [ Kn [ Kl, where n � m > 1, n � l > 1, and Km n Kn = K1,Kl nKn = K1. Moreover, V (Km) \ V (Kl) = ; or V (Km) [ V (Kl) = V (G).This 
hara
terization was applied to obtain a polynomial-time algorithm toedge 
olour split-indi�eren
e graphs [25℄. In the sequel, we show how to apply this
hara
terization to obtain a linear-time algorithm to solve the max-
ut problemfor split-indi�eren
e graphs.The balan
ed 
ut is not always maximalA natural approa
h [7℄ for solving max-
ut for indi�eren
e graphs is the fol-lowing. Let v1; v2; : : : ; vt be an indi�eren
e order for G and de�ne K = (S; S)as follows: Pla
e in S all verti
es with odd labels and pla
e in S the remain-ing verti
es (i.e., those with even labels). By de�nition of K and by Remark 1,
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K \E(M) is a max-
ut of M, for every graph M indu
ed by a maximal 
liqueof G. This natural approa
h de�nes a 
ut that is lo
ally balan
ed, i.e., it givesa 
ut that is a max-
ut with respe
t to ea
h maximal 
lique. The following ex-ample shows that K is not ne
essarily a max-
ut of G. Consider the indi�eren
egraph G with �ve (ordered) verti
es v1; v2; v3; v4; v5, where fv1; v2; v3; v4g indu
ea K4, and fv3; v4; v5g indu
e a K3. Note that the 
ut (fv1; v3; v5g; fv2; v4g) has5 edges, whereas the 
ut (fv1; v2; v5g; fv3; v4g) has 6 edges. Therefore, this ap-proa
h works only when the indi�eren
e graph G has only one maximal 
lique,i.e., when G is a 
omplete graph whi
h 
overs the �rst point in Theorem 1.Let G = Kn [Km, where jV (Kn) \ V (Km)j = i. Call Ki the graph indu
edby the verti
es of the interse
tion. We say that a 
ut K of G is 
ompatible if:a) K \ E(Kn) is a max-
ut of Kn and K \ E(Km) is a max-
ut of Km;b) Among all 
uts K of G satisfying 
ondition a), jK \ E(Ki)j is minimal.Clearly, the 
ut proposed by the natural approa
h satis�es 
ondition a) butnot ne
essarily 
ondition b) of the de�nition of 
ompatible 
ut. Clearly, for theexample above the 
ompatible 
ut gives the maximum 
ut. However, our subse-quent study of the max-
ut problem for graphs with two maximal 
liques showsthat it is not always possible to de�ne a max-
ut whi
h is a 
ompatible 
ut forthe graph. We a
tually show that there are graphs for whi
h the max-
ut is notbalan
ed with respe
t to any maximal 
lique of the graph.In the sequel, we show how to use this approa
h|
onsidering 
uts K su
hthat lo
ally K \ E(M) is a max-
ut of M, for every graph M indu
ed by amaximal 
lique|to �nd �rst a max-
ut in a graph with two maximal 
liques(whi
h 
overs the se
ond point in Theorem 1) and then to �nd a max-
ut in asplit-indi�eren
e graph (by dealing with the third point in Theorem 1).Graphs with two maximal 
liquesIn this se
tion we 
onsider general graphs with pre
isely two maximal 
liques.Note that a graph with pre
isely two maximal 
liques is ne
essarily an indi�er-en
e graph but not ne
essarily a split graph.Lemma 1. Let G = Kn[Km with n � m > i � 1, where jV (Kn)\V (Km)j = i.Call Ki the graph indu
ed by the verti
es of the interse
tion. Let (S; S) be a 
utof G. Let x = jS \ V (Ki)j. Suppose x � b i2
. Then, the maximum value of a 
ut(S; S) having x verti
es in S \ V (Ki) is obtained by pla
ing the verti
es outsidethe interse
tion Ki as follows:{ Pla
e in S the largest possible number that is less than or equal to dn2 e � xof verti
es of Kn nKi;{ Pla
e in S the largest possible number that is less than or equal to dm2 e � xof verti
es of Km nKi.
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Proof. Let N = (S; S) be a 
ut of G. Sin
e G 
ontains two maximal 
liques, i.e.,G = Kn [Km, with jV (Kn) \ V (Km)j = i, we may 
ount the number of edgesin the 
ut N as follows:jN j = jN \E(Kn)j+ jN \ E(Km)j � jN \E(Ki)j:Now be
ause x = jS \ V (Ki)j, we have jN \ E(Ki)j = x(i � x). Hen
e, bypla
ing the verti
es outside the interse
tion Ki as des
ribed, we get a 
ut as
lose as possible to the balan
ed 
ut with respe
t to both Kn and Km.By using the notation of Lemma 1, let M(x) be the number of edges of amaximum 
ut of G having x verti
es of Ki in S. By Lemma 1, M(x) is well de-�ned as a fun
tion of x in the interval [0; b i2
℄. We 
onsider three 
ases a

ordingto the relation between i and dm2 e, and i and dn2 e. In ea
h 
ase, our goal is to�nd the values of x in the interval [0; b i2
℄ whi
h maximize M(x).Case 1: i � dm2 e � dn2 e In this 
ase, x � dm2 e and i�x � dm2 e. Hen
e, verti
esoutside the interse
tion 
an be pla
ed a

ordingly to get balan
ed partitions forboth Kn and Km. Then M(x) is equal to M1(x), whi
h is de�ned as follows:M1(x) = dn2 ebn2 
 + dm2 ebm2 
 � x(i � x): We want to maximize M1(x) over theinterval [0; b i2
℄. In this 
ase, we have just one maximum, whi
h o

urs at x = 0.Case 2: dm2 e < i � dn2 e In this 
ase, we still have x � dm2 e, but not ne
essarilyi� x � dm2 e. If i� x � dm2 e, then the fun
tion M(x) is equal to M1(x) above.Otherwise, i� x > dm2 e, and it is not possible to get a balan
ed partition withrespe
t toKm: By Lemma 1, the maximum 
ut in this 
ase is obtained by pla
ingall verti
es of Km nKi in S. Therefore, the fun
tion M(x) isM(x) = �M2(x) = dn2 ebn2 
+ (m� i)(i� x) for 0 � x < i� dm2 eM1(x) = dn2 ebn2 
+ dm2 ebm2 
 � x(i� x) for i� dm2 e � x � b i2
It is easy to see that M(x) is a fun
tion that is 
ontinuous and de
reasingwith maximum at x = 0.Case 3: dm2 e � dn2 e < i In this 
ase, we distinguish three intervals for i� xto be in:If i�x � dm2 e, then verti
es outside the interse
tion 
an be pla
ed a

ordinglyto get balan
ed partitions for both Kn and Km, and M(x) =M1(x).If dm2 e < i� x � dn2 e, then only Kn gets a balan
ed partition and M(x) =M2(x).Finally, if i�x > dn2 e, then a maximum 
ut is obtained by pla
ing all verti
esoutside the interse
tion in S and we get a new fun
tion M3(x).Therefore, a 
omplete des
ription of the fun
tion M(x) isM(x) =8<:M3(x) = (i� x)(n+m� 2i+ x) for 0 � x < i� dn2 eM2(x) = dn2 ebn2 
+ (m� i)(i� x) for i� dn2 e � x < i� dm2 eM1(x) = dn2 ebn2 
+ dm2 ebm2 
 � x(i� x) for i� dm2 e � x � b i2
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Observe that this fun
tion is also 
ontinuous but not always de
reasing. Thefun
tion M3(x) is a parabola with apex at x = 2i�N2 , where N = m + n � iis the total number of verti
es of G. For this reason, we distinguish two 
ases,a

ording to the relation between i and N , as follows: M(x) has maximum atx = 0 when i � bN2 
, and M(x) has maximum at x = 2i�N2 when i > bN2 
.Sin
e x takes values on the interval [0; b i2
℄, we have two possible values for x inthis 
ase: the maximum 
ut has either i� bN2 
 or i� dN2 e verti
es of Ki in S.In summary, we have shown:Theorem 2. Let G = Kn[Km with n � m > i � 1, where jV (Kn)\V (Km)j =i. Call Ki the graph indu
ed by the verti
es of the interse
tion. Let v1; v2; : : : ; vNbe an indi�eren
e order of G su
h that verti
es v1; v2; : : : ; vn indu
e a Kn, ver-ti
es vn�i; vn�i+1; : : : ; vn indu
e a Ki 
ontaining the verti
es of the interse
tion,and vn�i; vn�i+1; : : : ; vN indu
e a Km. A maximum 
ut of G is obtained asfollows:{ If i � dm2 e � dn2 e, then the 
ompatible 
ut (S; S) that pla
es in S the �rstdn2 e verti
es, and the last dm2 e verti
es, 
ontains zero edges of Ki, and is amaximum 
ut of G.{ If dm2 e < i � dn2 e, then the 
ut (S; S) that pla
es in S the �rst dn2 e verti
es,and the last m � i verti
es, 
ontains zero edges of Ki, is not a 
ompatible
ut, and is a maximum 
ut of G.{ If dm2 e � dn2 e < i, then we distinguish two 
ases. If i � bN2 
, then the 
ut(S; S) that pla
es in S the �rst n � i verti
es, and the last m � i verti
es,
ontains zero edges of Ki, is not a 
ompatible 
ut, and is a maximum 
utof G. If i > bN2 
, then the 
ut (S; S) that pla
es in S dN2 e verti
es if theinterse
tion is not a 
ompatible 
ut, and is a maximum 
ut of G.Split-indi�eren
e graphs with three maximal 
liquesIn this se
tion we 
onsider split-indi�eren
e graphs with pre
isely three maximal
liques. By Theorem 1, any su
h graph G = Km [Kn [Kl, with n � m, n � l,satis�esKmnKn = f1g,KlnKn = ftg, i.e., the vertex set V (G) = V (Kn)[f1; tg.In other words, we have jV (G)j = N = n + 2. In addition, there exists anindi�eren
e order for G having vertex 1 �rst, vertex t last, and the remainingverti
es between 1 and t.To obtain a solution for the max-
ut problem for a split-indi�eren
e graphwith pre
isely three maximal 
liques, we shall 
onsider three 
ases.Case 1: vertex 1 is adja
ent to at most bn2 
 verti
es or vertex t isadja
ent to at most bn2 
 verti
es In the pre
eding subse
tion we studiedthe 
ase of two maximal 
liques. In parti
ular, we got the easy 
ase that if agraph H = Kn [Km, with n � m and su
h that Km nKn = f1g, then thereexists a max-
ut of H that pla
es on the same side the dn2 e verti
es that are
loser to vertex 1 with respe
t to the indi�eren
e order of H , and pla
es vertex1 and the remaining bn2 
 verti
es on the opposite side.
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Now suppose vertex t is adja
ent to at most bn2 
 verti
es. Let (S; V (H)nS) bea max-
ut of H that pla
es all neighbours of t on the same side S. By Remark 2,(S; V (H)nS[ftg) is a max-
ut of the entire graph G, be
ause (S; V (H)nS[ftg)looses the same number of edges as the 
ut (S; V (H) n S).Case 2: both verti
es 1 and t are adja
ent to at least dn2 e verti
es butthere are not bN2 
 verti
es adja
ent to both 1 and t Note that everyvertex of Kn is adja
ent to 1 or to t. Let S 
ontain vertex 1 and a set of dn2 eneighbours of t that in
ludes all nonneighbours of 1. The only \missing" edge inthe 
ut (S; S) is the edge 1t, an edge not present in G. Sin
e there are not bN2 
verti
es adja
ent to both 1 and t, it is not possible to de�ne a 
ut for G largerthan (S; S) by pla
ing verti
es 1 and t on the same side.Case 3: there exist bN2 
 verti
es adja
ent to both 1 and t Let S be aset of bN2 
 verti
es adja
ent to both 1 and t. Remark 3 justi�es (S; S) to be amax-
ut of G.Theorem 3. Let G be a split-indi�eren
e graph with three maximal 
liques Km,Kn, and Kl, with n � m, n � l, and satisfying Km nKn = f1g, Kl nKn = ftg.Let v1; v2; : : : ; vN be an indi�eren
e order of G having vertex 1 �rst, vertex tlast. A maximum 
ut of G is obtained as follows:{ If vertex t is adja
ent to at most bn2 
 verti
es, then the 
ut (S; S) that pla
esin S vertex 1 and the bn2 
 verti
es that are 
loser to t with respe
t to theindi�eren
e order is a maximum 
ut of G. An analogous result follows ifvertex 1 is adja
ent to at most bn2 
 verti
es.{ If both verti
es 1 and t are adja
ent to at least dn2 e verti
es but there arenot bN2 
 verti
es adja
ent to both 1 and t, then the 
ut (S; S) that pla
esin S vertex 1 and the dn2 e verti
es that are 
loser to t with respe
t to theindi�eren
e order is a maximum 
ut of G.{ If there exist bN2 
 verti
es adja
ent to both 1 and t, then the 
ut (S; S) thatpla
es in S a set of bN2 
 verti
es adja
ent to both 1 and t is a maximum 
utof G.Altogether, we obtain the following main result.Corollary 1. Simple max-
ut 
an be solved in linear time for split-indi�eren
egraphs.Proof. The result dire
tly follows from 
ombining Theorem 1 with Remark 1,Theorem 2, and Theorem 3.
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4 Polynomial-time solution for (q; q � 4)-graphsSome preliminaries A graph is a (q; t)-graph if no set of at most q verti
esindu
es more than t distin
t P4's. The 
lass of 
ographs are exa
tly the (4; 0)-graphs, i.e., 
ographs are graphs without indu
ed P4. The 
lass of so-
alledP4-sparse graphs 
oin
ides with the (5; 1)-graphs. The 
lass of P4-sparse graphswas extensively studied in [17{19, 12℄.It was shown in [3℄ that many problems 
an be solved eÆ
iently for (q; q�4)-graphs for ea
h 
onstant q. These results make use of a de
omposition theoremwhi
h we state below. In this se
tion we show that this de
omposition 
an also beused to solve the simple max-
ut problem. In order to state the de
ompositiontheorem for (q; q � 4)-graphs we need some preliminaries.Re
all that a split graph is a graph of whi
h the vertex set 
an be split intotwo sets K and I su
h that K indu
es a 
lique and I indu
es an independentset in G. A spider is a split graph 
onsisting of a 
lique and an independentset of equal size (at least two) su
h that ea
h vertex of the independent set haspre
isely one neighbor in the 
lique and ea
h vertex of the 
lique has pre
iselyone neighbor in the independent set, or it is the 
omplement of su
h a graph.We 
all a spider thin if every vertex of the independent set has pre
isely oneneighbor in the 
lique. A spider is thi
k if every vertex of the independent set isnon-adja
ent to pre
isely one vertex of the 
lique. The smallest spider is a pathwith four verti
es (i.e., a P4) and this spider is at the same time both thi
k andthin.The simple max-
ut problem is easy to solve for spiders:Remark 4 Let G be a thin spider with 2n verti
es where n � 3. Then m
(G) =bn24 
+ n. If G is a thi
k spider then m
(G) = n(n� 1).A graph G is p-
onne
ted if for every partition into two non-empty sets thereis a 
rossing P4, that is a P4 with verti
es in both sets of the partition. Thep-
onne
ted 
omponents of a graph are the maximal indu
ed subgraphs whi
hare p-
onne
ted. A p-
onne
ted graph is separable if there is a partition (V1; V2)su
h that every 
rossing P4 has its midpoints in V1 and its endpoints in V2.Re
all that a module is a non-trivial (i.e., not ; or V ) set of verti
es whi
hhave equivalent neighborhoods outside the set. The 
hara
teristi
 of a graph isobtained by shrinking the non-trivial modules to single verti
es. It 
an be shown(see [2, 20℄) that a p-
onne
ted graph is separable if and only if its 
hara
teristi
is a split graph.Our main algorithmi
 tool is the following stru
tural theorem due to [20℄.Theorem 4. For an arbitrary graph G exa
tly one of the following holds:{ G or G is dis
onne
ted.{ There is a unique proper separable p-
onne
ted 
omponent H of G with sep-aration (V1; V2) su
h that every vertex outside H is adja
ent to all verti
esof V1 and to none of V2.{ G is p-
onne
ted.
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Furthermore, the following 
hara
terization of p-
onne
tedness for (q; q� 4)-graphs was obtained in [2℄ (also see [4℄).Theorem 5. Let G = (V;E) be a (q; q � 4)-graph whi
h is p-
onne
ted. Theneither jV j < q or G is a spider.Theorem 4 and Theorem 5 lead to a binary de
omposition tree for (q; q� 4)-graphs (also see [3℄ for more details). This de
omposition tree 
an be found inlinear time [5℄. The leaves of this tree 
orrespond with spiders or graphs withless than q verti
es (this re
e
ts the last point of Theorem 4 and Theorem 5).The internal nodes of this tree have one of three possible labels. If the label ofan internal node is 0 or 1, then the graph 
orresponding with this node is thedisjoint union or the sum of the graphs 
orresponding with the 
hildren of thenode (this re
e
ts the �rst point of Theorem 4). If the label of the node is 2(this re
e
ts the se
ond point of Theorem 4), one of the graphs, w.l.o.g. G1,has a separation (V 11 ; V 21 ) and it is either a spider or a graph with less than qverti
es of whi
h the 
hara
teristi
 is a split graph (Theorems 4 and 5), and G2is arbitrary. If G1 is a spider, all verti
es of G2 are made adja
ent exa
tly toall verti
es of the 
lique (indu
ed by V 11 ) of G1. If G1 is a graph of whi
h the
hara
teristi
 is a split graph, all verti
es of G2 are made adja
ent exa
tly to allverti
es (i.e., V 11 ) of every 
lique module of G1.In the following subse
tions we brie
y des
ribe the method to 
ompute thesimple max-
ut for graphs with few P4's. The main idea of the algorithm isthat we 
ompute for ea
h node of the de
omposition tree all relevant values ofm
(G0; i), G0 being the graph 
orresponding with this node. The table of valuesfor su
h a node is 
omputed, given the tables of the 
hildren of the node. In thesubsequent paragraphs, we dis
uss the methods to do this, for ea
h of the typesof nodes in the de
omposition tree. On
e we have the table of the root node,i.e., all values m
(G; i), we are done.Cographs We review the algorithm for the simple max-
ut problem for
ographs (i.e., (4; 0)-graphs) whi
h was published in [6℄. A 
ograph whi
h isnot a single vertex is either the sum or the union of two (smaller) 
ographs. Inother words: 
ographs have a de
omposition tree with all internal nodes labelled0 or 1.Lemma 2. Let G = (V;E) be the union of G1 = (V1; E1) and G2 = (V2; E2).Thenm
(G; i) = maxfm
(G1; j) +m
(G2; i� j) : 0 � j � i ^jV1j � j ^ jV2j � i� jgLet G = (V;E) be the sum of G1 = (V1; E1) and G2 = (V2; E2). Thenm
(G; i) = maxfm
(G1; j) +m
(G2; i� j) + j(jV2j � (i� j)) +(jV1j � j)(i� j) : 0 � j � i ^ jV1j � j ^ jV2j � i� jgCorollary 2. There exists an O(N2) time algorithm to 
ompute the simple max-
ut of a 
ograph.
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P4-sparse graphs The de
omposition tree (as de�ned above) for graphs thatare P4-sparse has nodes with label 0, 1, or 2 [17℄. Note that in the 
ase oflabel 2 we 
an assume here that the graph G1 is a spider (see the dis
ussionafter Theorems 4 and 5, and [18℄). In the lemma below, we assume G is obtainedfrom G1 and G2 as des
ribed above by the operation of a 2-labeled node. Let Kbe the 
lique and S be the independent set of G1. Let ni denote the number ofverti
es of Gi. Note that every vertex of G2 is adja
ent to every vertex of K.Lemma 3. Let G, G1, G2, S, and K be as above. Let G1 be a thi
k spider.Then m
(G; i) = maxfm
(G2; j) + j(jKj � j0) + j0(n2 � j) +(i� j � j0)(jKj � 1) : 0 � j; j0 � igLet G1 be a thin spider. Thenm
(G; i) = maxfm
(G2; j) + j(jKj � j0) + j0(n2 � j) +(i� j � j0) : 0 � j; j0 � igFor P4-sparse graphs (i.e., (5; 1)-graphs), Lemmas 2 and 3 are suÆ
ient to
ompute all the values m
(G0; i) for all graphs asso
iated with nodes in thede
omposition tree. Thus, we obtain:Corollary 3. There exists an O(N3) time algorithm to 
ompute the simple max-
ut for a P4-sparse graph.jV1j < q and the 
hara
teristi
 of G1 is a split graph If we have ade
omposition tree of (q; q � 4)-graphs, then there is one remaining 
ase: G isobtained from G1 and G2 by the operation 
orresponding to a 2-labeled node,and G1 has less than q verti
es. In this 
ase the vertex set of G2 a
ts as a module,i.e., every vertex of G2 has exa
tly the same set of neighbors in G1. Let K bethe set of verti
es of G1 whi
h are adja
ent to all verti
es of G2.Let m
(G1; j; j0) be the maximum 
ut in G1 with exa
tly j verti
es in K andj0 verti
es in V1 � K. Sin
e G1 is 
onstant size the numbers m
(G1; j; j0) 
aneasily be 
omputed in 
onstant time.Lemma 4. Let G, G1, G2, K be as above. Suppose that jV1j < q and the 
har-a
teristi
 of G1 is a split graph. Thenm
(G; i) = maxfm
(G2; j) +m
(G1; j0; i� j � j0) +j(jKj � j0) + j0(n2 � j) + (i� j � j0) : 0 � j; j0 � igNow, with Lemma 4, and Lemmas 2 and 3, we obtain:Theorem 6. There exists an O(N4) time algorithm for the simple max-
utproblem on (q; q � 4)-graphs for ea
h 
onstant q.
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5 Con
luding remarksThis paper 
onsiders two 
lasses of graphs: indi�eren
e graphs and (q; q � 4)-graphs. Both 
lasses possess ni
e de
omposition properties whi
h we make useof in the des
ribed algorithms for simple max-
ut. Also, both graph 
lasses westudy are related to split graphs, a 
lass of graphs for whi
h simple max-
utis known to be hard.A linear-time algorithm for the re
ognition of indi�eren
e graphs was pre-sented by de Figueiredo et al. [10℄. The algorithm partitions in linear time thevertex set of an indi�eren
e graph into sets of twin verti
es, i.e., verti
es of thegraph that belong to the same set of maximal 
liques.Given a graph G with a bounded number of maximal 
liques, the partitionof G into sets of twins 
ontains a bounded number k of sets. Hen
e, we 
an
ompute m
(G) in polynomial time, by maximizing a fun
tion on k variablesx, that assume integer values in a limited region of the spa
e, i.e., on a �nitedomain. This simple argument establishes the polynomial upper bound O(Nk)for the max-
ut problem for a 
lass of graphs with a bounded number of maximal
liques.One goal of this paper was to establish a linear time upper bound for the
omputation of m
(G) for a split-indi�eren
e graph G, by 
omputing the valueof m
(G) in 
onstant time, given that we 
an in linear time determine whi
h
ase of the 
omputation we are in. We leave it as an open problem to extend theproposed solution to the whole 
lass of indi�eren
e graphs.Another goal rea
hed by this paper was to extend to the whole 
lass of(q; q� 4)-graphs the known solution of simple max-
ut for 
ographs. We leaveit as an open problem to �nd a more eÆ
ient polynomial-time algorithm for the
omputation of m
(G) for a (q; q � 4)-graph G.A
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