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Abstract. The SIMPLE MAX-CUT problem is as follows: given a graph,
find a partition of its vertex set into two disjoint sets, such that the
number of edges having one endpoint in each set is as large as possible.
A split graph is a graph whose vertex set admits a partition into a stable
set and a clique. The SIMPLE MAX-CUT decision problem is known to be
NP-complete for split graphs. An indifference graph is the intersection
graph of a set of unit intervals of the real line. We show that the SIMPLE
MAX-CUT problem can be solved in linear time for a graph that is both
split and indifference. Moreover, we also show that for each constant
q, the SIMPLE MAX-CUT problem can be solved in polynomial time for
(g, q —4)-graphs. These are graphs for which no set of at most ¢ vertices
induces more than ¢ — 4 distinct Py4’s.
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Keywords: analysis of algorithms and problem complexity, efficient algo-
rithms, graph decomposition algorithms, max-cut problem.

1 Introduction

The MAXIMUM CUT problem (or the MAXIMUM BIPARTITE SUBGRAPH problem)
asks for a bipartition of the graph (with edge weights) with a total weight as large
as possible. In this paper we consider only the simple case, i.e., all edges in the
graph have weight one. Then the objective of this SIMPLE MAX-CUT problem is
to delete a minimum number of edges such that the resulting graph is bipartite.
Making a graph bipartite with few edge deletions has many applications [26]. A
very recent one is found in the emerging field of SNP (single nucleotide polymor-
phism) analysis in computational molecular biology, e.g., see [11,27]. Aiming for
efficient algorithms, we only consider the unweighted case since the classes of
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graphs we consider in this paper contain all complete graphs and the (weighted)
MAXIMUM CUT problem is NP-complete for every class of graphs containing all
complete graphs [21, 26].

As SIMPLE MAX-cUT is NP-complete in general, there are basically two
lines of research to cope with its computational hardness. First, one may study
polynomial-time approximation algorithms (it is known to be approximable
within 1.1383, see [13]) or try to develop exact (exponential-time) algorithms
(see [15] for an algorithm running in time 2/% - m©@() where m is the number
of edges in the graph). Approximation and exact algorithms both have their
drawbacks, i.e., non-optimality of the gained solution or poor running time even
for relatively small problem instance sizes. Hence, the second line of research—as
pursued in this paper—is to determine and analyze special graph structures that
make it possible to solve the problem efficiently and optimally. This leads to the
study of special graph classes. (Have a look at the classics [14, 9] for general infor-
mation on numerous graph classes.) For example, it was shown that the SIMPLE
MAX-CUT problem remains NP-complete for cobipartite graphs, split graphs, and
graphs with chromatic number three [6]. On the positive side, the problem can
be efficiently solved for cographs [6], linegraphs [1], planar graphs [24, 16], and
for graphs with bounded treewidth [29].

In this paper we consider two classes of graphs, both of which possess nice
decomposition properties which we make use of in the algorithms for SIMPLE
MAX-CUT to be described. Also, both graph classes we study are related to
split graphs. An indifference graph is the intersection graph of a set of unit
intervals of the real line. (See [23] for more information on intersection graphs
and their applications in biology and other fields.) A split graph is a graph whose
vertex set admits a partition into a stable set and a clique. Ortiz, Maculan,
and Szwarcfiter [25] characterized graphs that are both split and indifference
in terms of their maximal cliques, and used this characterization to edge-colour
those graphs in polynomial time. First, we show that this characterization also
leads to a linear-time solution for the SIMPLE MAX-CUT problem for graphs that
are both split and indifference.

Second, we study the class of (g, q — 4)-graphs (also known as graphs with
few P,’s [4] and introduced in [2]). These are graphs for which no set of at
most ¢ vertices induces more than g — 4 distinct Py’s. (A Py is a path with four
vertices.) In this terminology, the cographs are exactly the (4,0)-graphs. The
class of (5, 1)-graphs are called P;-sparse graphs. Jamison and Olariu [20] showed
that (q,q — 4)-graphs allow a nice decomposition tree similar to cographs [20].
This decomposition can be used to find fast solutions for several in general NP-
complete problems (see, e.g., [3, 22]). Also using this decomposition, we show that
the SIMPLE MAX-CUT problem can be solved in polynomial time for (g, q — 4)-
graphs for every constant gq.
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2 Preliminaries

In this paper, G denotes a simple, undirected, finite, connected graph, and V(G)
and E(G) are respectively the vertex and edge sets of G. The vertex-set size is
denoted by |V(G)| = N, and Ky denotes the complete graph on N vertices. A
stable set (or independent set) is a set of vertices pairwise non-adjacent in G.
A clique is a set of vertices pairwise adjacent in G. A mazimal cliqgue of G is a
clique not properly contained in any other clique. A subgraph of G is a graph
H with V(H) C V(G) and E(H) C E(G). For X C V(G), we denote by G[X]
the subgraph induced by X, that is, V(G[X]) = X and E(G[X]) consists of those
edges of E(G) having both ends in X.

Given nonempty subsets X and Y of V(G), the symbol (X,Y") denotes the
subset {zy € E(G) :z € X,y € Y} of E(G). A cut K of a graph G is the set of
edges (S,V(G)\ S), defined by a subset S C V(G). We often write S instead of
V(G)\ S. We also write §(S) for the set of edges with exactly one endpoint in .S
(and the other endpoint in V(G)\S). By |K| we denote the number of edges in the
cut K and £(K) is the number of edges in E(G)\ K, i.e., the number of edges that
are lost by the cut K. A maz-cut K is a cut such that || is as large as possible.
The (simple) max-cut problem considers the computation of two complementary
parameters of a graph G: mc(G) = max{|K| : K is a cut of G} = maxgcy |6(S5)],
the maximum number of edges in a cut of G; and ¢(G) = |E(G)| — mc(G),
the minimum number of edges lost by a cut of G (making the remaining graph
bipartite). Instead of calculating me(G) directly it is sometimes more convenient
to calculate first, for i = 1,...,n, the values mc(G, i) = maxgcy,sj—=; [0(S)].

In the sequel, the following observations will be helpful.

Remark 1 For Ky, the complete graph on N vertices, we have:

~ If (S, S) is a maz-cut of Ky, then |S| = [§];
- me(Kn) = 5] - T57.

2
We say that a max-cut in a complete graph is a balanced cut.

Remark 2 Let H be a subgraph of a graph G and let K be a cut of G. If
LK) =L(H), then K is a maz-cut of G.

Proof. Since H is a subgraph of G, any cut N of G satisfies £(N) > £(H) = ((K).
Hence K is a cut of minimum loss in G, in other words, K is a max-cut of G.
Remark 3 Let |[V(G)| = N and let S be a subset of V(G) satisfying:

— every vertex of S is adjacent to every vertez of S.

Then (S, S) is a maz-cut of G.
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Proof. Clearly the cut (S, S) has [£ ][] edges, the maximum possible size of
a cut in G. ]

The union of two graphs G; and G5, denoted by G1 U GG, is the graph such
that V(G1 U GQ) = V(Gl) U V(Gz) and E(G1 U Gz) = E(Gl) U E(G2) By way
of contrast, G \ G2 denotes the subgraph of G; induced by V(G1)\ V(G2). The
(disjoint) sum of two graphs G; and G2 makes every vertex of G adjacent to
every vertex of Gs.

3 Linear-time solution for split-indifference graphs

Some preliminaries

An interval graph is the intersection graph of a set of intervals of the real line
(cf. [9,23] for general expositions). In case of unit intervals the graph is called
unit interval, proper interval, or indifference graph. We shall adopt the latter
name, to be consistent with the terminology of indifference orders, defined next.
(For a recent proof that the class of unit interval graphs coincides with that of
the proper interval graphs, see [8].) Indifference graphs can be characterized as
those interval graphs without an induced claw, (i.e., a K 3). Indifference graphs
can also be characterized by a linear order: their vertices can be linearly ordered
so that the vertices contained in the same maximal cliques are consecutive [28].
We call such an order an indifference order.

A split graph is a graph whose vertex set can be partitioned into a stable set
and a clique. A split-indifference graph is a graph that is both split and indiffer-
ence. We shall use the following characterization of split-indifference graphs in
terms of their maximal cliques due to [25].

Theorem 1. Let G be a connected graph. Then G is a split-indifference graph
if and only if

— G =Ky, or

- G=K,UK,, wheren>m >1, and K, \ K, = Ky, or

-G=Kn,UK,UK;, wheren>m >1,n>1>1, and K, \ K,, = Kjy,
K\ K, = K;. Moreover, V(K,)NV(K;) =0 or V(K,) UV (K;) = V(G).

This characterization was applied to obtain a polynomial-time algorithm to
edge colour split-indifference graphs [25]. In the sequel, we show how to apply this
characterization to obtain a linear-time algorithm to solve the max-cut problem
for split-indifference graphs.

The balanced cut is not always maximal

A natural approach [7] for solving max-cut for indifference graphs is the fol-
lowing. Let v, vs,...,v; be an indifference order for G and define K = (S, 5)
as follows: Place in S all vertices with odd labels and place in S the remain-
ing vertices (i.e., those with even labels). By definition of K and by Remark 1,
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K N E(M) is a max-cut of M, for every graph M induced by a maximal clique
of GG. This natural approach defines a cut that is locally balanced, i.e., it gives
a cut that is a max-cut with respect to each maximal clique. The following ex-
ample shows that K is not necessarily a max-cut of G. Consider the indifference
graph G with five (ordered) vertices vy, v2,v3, vy, v5, where {vy, v9,v3,v4} induce
a Ky, and {vs,v4,v5} induce a K3. Note that the cut ({vi,vs,v5}, {v2,v4}) has
5 edges, whereas the cut ({v1,v2,v5},{vs,vs4}) has 6 edges. Therefore, this ap-
proach works only when the indifference graph G has only one maximal clique,
i.e., when G is a complete graph which covers the first point in Theorem 1.

Let G = K, U K, where |V(K,) NV (Ky,)| =i. Call K; the graph induced
by the vertices of the intersection. We say that a cut I of G is compatible if:

a) KN E(K,) is a max-cut of K,, and KX N E(K,,) is a max-cut of K,,;
b) Among all cuts K of G satisfying condition a), | N E(K;)| is minimal.

Clearly, the cut proposed by the natural approach satisfies condition a) but
not necessarily condition b) of the definition of compatible cut. Clearly, for the
example above the compatible cut gives the maximum cut. However, our subse-
quent study of the max-cut problem for graphs with two maximal cliques shows
that it is not always possible to define a max-cut which is a compatible cut for
the graph. We actually show that there are graphs for which the max-cut is not
balanced with respect to any maximal clique of the graph.

In the sequel, we show how to use this approach—considering cuts K such
that locally K N E(M) is a max-cut of M, for every graph M induced by a
maximal clique—to find first a max-cut in a graph with two maximal cliques
(which covers the second point in Theorem 1) and then to find a max-cut in a
split-indifference graph (by dealing with the third point in Theorem 1).

Graphs with two maximal cliques

In this section we consider general graphs with precisely two maximal cliques.
Note that a graph with precisely two maximal cliques is necessarily an indiffer-
ence graph but not necessarily a split graph.

Lemma 1. Let G = K,UK,, withn >m > i > 1, where |V (K,)NV (K,)| = 1.
Call K; the graph induced by the vertices of the intersection. Let (S, S) be a cut
of G. Let v = |SNV(K;)|. Suppose x < |£]. Then, the mazimum value of a cut
(S, S) having = vertices in S NV (K;) is obtained by placing the vertices outside

the intersection K; as follows:

— Place in S the largest possible number that is less than or equal to [§] —
of vertices of K, \ K;;

— Place in S the largest possible number that is less than or equal to [5] — x
of vertices of K, \ K.



LCNS, VoL 3059, pp. 87-99, SPRINGER 2004

Proof. Let N = (S, S) be a cut of G. Since G contains two maximal cliques, i.e.,
G = K, UK, with |V(K,)NV(K,,)| =i, we may count the number of edges
in the cut NV as follows:

VT =N NE(K)| + NN E(Kny)| - NN E(K)|.

Now because z = |S N V(K;)|, we have [N N E(K;)| = z(i — z). Hence, by
placing the vertices outside the intersection K; as described, we get a cut as
close as possible to the balanced cut with respect to both K,, and K,,. [ |

By using the notation of Lemma 1, let M (z) be the number of edges of a
maximum cut of G having x vertices of K; in S. By Lemma 1, M (z) is well de-
fined as a function of z in the interval [0, | ]]. We consider three cases according
to the relation between i and [%], and 7 and [§]. In each case, our goal is to
find the values of z in the interval [0, | |] which maximize M (z).

Case 1:7 < [] < [Z] Inthiscase,» < [F] andi—z < [F]. Hence, vertices
outside the intersection can be placed accordingly to get balanced partitions for
both K, and K,,. Then M (z) is equal to M;(z), which is defined as follows:
My(z) = [3112] + [2][2] — (i — z). We want to maximize M;(z) over the
interval [0, | £]]. In this case, we have just one maximum, which occurs at z = 0.

Case 2: [] < i < [Z] In this case, we still have x < [ ], but not necessarily
i—z < [F]. Ifi—x < [3], then the function M (x) is equal to M;(z) above.
Otherwise, i —z > [%], and it is not possible to get a balanced partition with
respect to K,,,: By Lemma 1, the maximum cut in this case is obtained by placing
all vertices of K, \ K; in S. Therefore, the function M(z) is

_ My(x) = [3]]5] + (m —i)(i — =) for0<z<i-[3]
M(z) = {M1<x> — (2112 + [2](2] — (i — ) fori—[2] <z < |i]

It is easy to see that M(zx) is a function that is continuous and decreasing
with maximum at z = 0.

Case 3: [] < [5] < ¢ In this case, we distinguish three intervals for i —z
to be in:

If i—2 <[], then vertices outside the intersection can be placed accordingly
to get balanced partitions for both K,, and K,,, and M (z) = M;(x).

If [3] <i—a2 < [§], then only K, gets a balanced partition and M (z) =
M2 (QZ)

Finally, if i —z > [§], then a maximum cut is obtained by placing all vertices
outside the intersection in S and we get a new function Mjz(x).

Therefore, a complete description of the function M (z) is

Ms(z)=(G—2)(n+m —2i+x) for0<z<i—[2%]
M(z) = Ma(e) = [2][2) + (m—i)i—a)  fori—[2] <o <i]
Mi(z) = [5115] + [3115] —a(i —2) fori— T3] <z < [5]

B
|3

|
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Observe that this function is also continuous but not always decreasing. The

function Mj(z) is a parabola with apex at z = 228 where N = m +n — i

is the total number of vertices of G. For this reason, we distinguish two cases,
according to the relation between i and N, as follows: M (z) has maximum at

z = 0 when i < [§], and M(z) has maximum at z = 25X when i > |3 ].
Since z takes values on the interval [0, | £ ], we have two possible values for z in

this case: the maximum cut has either i — | ¥ | or i — [X¥] vertices of K; in S.

2 2
In summary, we have shown:

Theorem 2. Let G = K,UK,, withn >m >i> 1, where |V(K,)NV(K,)| =
i. Call K; the graph induced by the vertices of the intersection. Let vi,va,...,UN

be an indifference order of G such that vertices vy, vs,. .., v, induce a K,, ver-
tices Up—i, Un—it1,-- -, Up induce a K; containing the vertices of the intersection,
and Vy_ i, Vn_it1,.-.,0N induce a K. A maximum cut of G is obtained as
follows:

— If i < [2] < [2], then the compatible cut (S,S) that places in S the first
[5] vertices, and the last [%] vertices, contains zero edges of K;, and is a
mazimum cut of G. _

— If [F] <i < [§], then the cut (S, S) that places in S the first [3] vertices,
and the last m — i vertices, contains zero edges of K;, is not a compatible
cut, and is a mazimum cut of G.

- If [_%] < [2] < i, then we distinguish two cases. If i < ||, then the cut
(S,S) that places in S the first n — i vertices, and the last m — i vertices,
contains zero edges of K;, is not a_compatible cut, and is a mazimum cut
of G. If i > | &, then the cut (S,S) that places in S [X] vertices if the
intersection is not a compatible cut, and is a mazimum cut of G.

Split-indifference graphs with three maximal cliques

In this section we consider split-indifference graphs with precisely three maximal
cliques. By Theorem 1, any such graph G = K,, UK, U K;, withn > m, n > [,
satisfies K, \ K, = {1}, K;\ K,, = {t}, i.e., the vertex set V(G) = V(K,)U{1,t}.
In other words, we have |V(G)| = N = n + 2. In addition, there exists an
indifference order for G having vertex 1 first, vertex ¢ last, and the remaining
vertices between 1 and ¢.

To obtain a solution for the max-cut problem for a split-indifference graph
with precisely three maximal cliques, we shall consider three cases.

Case 1: vertex 1 is adjacent to at most |3 | vertices or vertex ¢ is
adjacent to at most |7 | vertices In the preceding subsection we studied
the case of two maximal cliques. In particular, we got the easy case that if a
graph H = K,, U K,;,, with n > m and such that K,, \ K, = {1}, then there
exists a max-cut of H that places on the same side the [§] vertices that are
closer to vertex 1 with respect to the indifference order of H, and places vertex

1 and the remaining | §] vertices on the opposite side.
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Now suppose vertex ¢ is adjacent to at most | § | vertices. Let (S, V(H)\S) be
a max-cut of H that places all neighbours of ¢ on the same side S. By Remark 2,
(S, V(H)\Su{t}) is a max-cut of the entire graph G, because (S, V (H)\ SU{t})

looses the same number of edges as the cut (S, V(H) \ 5).

Case 2: both vertices 1 and t are adjacent to at least [ 3] vertices but

there are not L%J vertices adjacent to both 1 and ¢ Note that every
vertex of K, is adjacent to 1 or to ¢. Let S contain vertex 1 and a set of [#]
neighbours of ¢ that includes all nonneighbours of 1. The only “missing” edge in
the cut (S, S) is the edge 1t, an edge not present in G. Since there are not ||
vertices adjacent to both 1 and ¢, it is not possible to define a cut for G larger
than (S, S) by placing vertices 1 and ¢ on the same side.

Case 3: there exist L%J vertices adjacent to both 1 and t Let S be a

set of |Z] vertices adjacent to both 1 and t. Remark 3 justifies (S, S) to be a
max-cut of G.

Theorem 3. Let G be a split-indifference graph with three maximal cliques K,,,
K,, and K;, with n > m, n > 1, and satisfying K, \ K,, = {1}, K; \ K,, = {t}.
Let vi,vs,...,vn be an indifference order of G having vertex 1 first, vertex t
last. A mazimum cut of G is obtained as follows:

— If vertex t is adjacent to at most | 3] vertices, then the cut (S, S) that places
in S vertex 1 and the || vertices that are closer to t with respect to the
indifference order is a mazimum cut of G. An analogous result follows if
vertex 1 is adjacent to at most |3 | vertices.

— If both vertices 1 and t are adjacent to at least [ ] vertices but there are

not |5 ] vertices adjacent to both 1 and t, then the cut (S,S) that places
in S wvertex 1 and the [§] vertices that are closer to t with respect to the
indifference order is a mazimum cut of G.

— If there ezist || vertices adjacent to both 1 and t, then the cut (S,S) that
places in S a set of L%J vertices adjacent to both 1 and t is a mazimum cut

of G.

Altogether, we obtain the following main result.

Corollary 1. SIMPLE MAX-CUT can be solved in linear time for split-indifference
graphs.

Proof. The result directly follows from combining Theorem 1 with Remark 1,
Theorem 2, and Theorem 3. [ ]
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4 Polynomial-time solution for (g,q — 4)-graphs

Some preliminaries A graph is a (q,t)-graph if no set of at most ¢ vertices
induces more than ¢ distinct P4’s. The class of cographs are exactly the (4,0)-
graphs, i.e., cographs are graphs without induced P;. The class of so-called
Py-sparse graphs coincides with the (5, 1)-graphs. The class of Ps-sparse graphs
was extensively studied in [17-19,12].

It was shown in [3] that many problems can be solved efficiently for (¢, q—4)-
graphs for each constant ¢q. These results make use of a decomposition theorem
which we state below. In this section we show that this decomposition can also be
used to solve the SIMPLE MAX-CUT problem. In order to state the decomposition
theorem for (g, q — 4)-graphs we need some preliminaries.

Recall that a split graph is a graph of which the vertex set can be split into
two sets K and I such that K induces a clique and I induces an independent
set in G. A spider is a split graph consisting of a clique and an independent
set of equal size (at least two) such that each vertex of the independent set has
precisely one neighbor in the clique and each vertex of the clique has precisely
one neighbor in the independent set, or it is the complement of such a graph.
We call a spider thin if every vertex of the independent set has precisely one
neighbor in the clique. A spider is thick if every vertex of the independent set is
non-adjacent to precisely one vertex of the clique. The smallest spider is a path
with four vertices (i.e., a P;) and this spider is at the same time both thick and
thin.

The SIMPLE MAX-CUT problem is easy to solve for spiders:

Remark 4 Let G be a thin spider with 2n vertices where n > 3. Then mc(G) =
L”TQJ +n. If G is a thick spider then mc(G) = n(n — 1).

A graph G is p-connected if for every partition into two non-empty sets there
is a crossing Py, that is a P, with vertices in both sets of the partition. The
p-connected components of a graph are the maximal induced subgraphs which
are p-connected. A p-connected graph is separable if there is a partition (Vi, Va)
such that every crossing Py has its midpoints in V5 and its endpoints in V5.

Recall that a module is a non-trivial (i.e., not § or V) set of vertices which
have equivalent neighborhoods outside the set. The characteristic of a graph is
obtained by shrinking the non-trivial modules to single vertices. It can be shown
(see [2,20]) that a p-connected graph is separable if and only if its characteristic
is a split graph.

Our main algorithmic tool is the following structural theorem due to [20].

Theorem 4. For an arbitrary graph G exactly one of the following holds:

— G or G is disconnected.

— There is a unique proper separable p-connected component H of G with sep-
aration (V1,Va) such that every vertex outside H is adjacent to all vertices
of V1 and to none of V.

— @ is p-connected.
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Furthermore, the following characterization of p-connectedness for (g, q — 4)-
graphs was obtained in [2] (also see [4]).

Theorem 5. Let G = (V, E) be a (q,q — 4)-graph which is p-connected. Then
either |V| < q or G is a spider.

Theorem 4 and Theorem 5 lead to a binary decomposition tree for (q,q — 4)-
graphs (also see [3] for more details). This decomposition tree can be found in
linear time [5]. The leaves of this tree correspond with spiders or graphs with
less than ¢ vertices (this reflects the last point of Theorem 4 and Theorem 5).
The internal nodes of this tree have one of three possible labels. If the label of
an internal node is 0 or 1, then the graph corresponding with this node is the
disjoint union or the sum of the graphs corresponding with the children of the
node (this reflects the first point of Theorem 4). If the label of the node is 2
(this reflects the second point of Theorem 4), one of the graphs, w.l.o.g. Gy,
has a separation (V}!,V}?) and it is either a spider or a graph with less than ¢
vertices of which the characteristic is a split graph (Theorems 4 and 5), and G2
is arbitrary. If GGy is a spider, all vertices of G5 are made adjacent exactly to
all vertices of the clique (induced by Vi') of G;. If G; is a graph of which the
characteristic is a split graph, all vertices of G5 are made adjacent exactly to all
vertices (i.e., V{') of every clique module of G;.

In the following subsections we briefly describe the method to compute the
simple max-cut for graphs with few P’s. The main idea of the algorithm is
that we compute for each node of the decomposition tree all relevant values of
me(G', i), G' being the graph corresponding with this node. The table of values
for such a node is computed, given the tables of the children of the node. In the
subsequent paragraphs, we discuss the methods to do this, for each of the types
of nodes in the decomposition tree. Once we have the table of the root node,
i.e., all values me(G, i), we are done.

Cographs We review the algorithm for the SIMPLE MAX-CUT problem for
cographs (i.e., (4,0)-graphs) which was published in [6]. A cograph which is
not a single vertex is either the sum or the union of two (smaller) cographs. In
other words: cographs have a decomposition tree with all internal nodes labelled
Oorl.

Lemma 2. Let G = (V, E) be the union of Gy = (Vi,Ey) and Gy = (Va, E»).
Then

me(G, i) = max{mc(G1,j) + me(Ga, i —j) : 0<j<iA
Vil > A (V2| > —j}
Let G = (V, E) be the sum of Gy = (V1,Ey) and Gy = (Va, Es). Then
mc(G, i) = max{mc(G1,j) + mc(Ga,i — j) + j(|Va| — (1 — 7)) +
(il =3 =3) : 0<j<in[Vi| > GA V] >d—j}

Corollary 2. There exists an O(N?) time algorithm to compute the simple maz-
cut of a cograph.
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P,-sparse graphs The decomposition tree (as defined above) for graphs that
are Pj-sparse has nodes with label 0, 1, or 2 [17]. Note that in the case of
label 2 we can assume here that the graph G is a spider (see the discussion
after Theorems 4 and 5, and [18]). In the lemma below, we assume G is obtained
from G and G5 as described above by the operation of a 2-labeled node. Let K
be the clique and S be the independent set of GG1. Let n; denote the number of
vertices of GG;. Note that every vertex of (G5 is adjacent to every vertex of K.

Lemma 3. Let G, G1, Gs, S, and K be as above. Let G1 be a thick spider.
Then

me(G,i) = max{me(Ga, j) + j(IK| = j') + j'(n2 = j) +
(i—j =3V KI-1) : 0<j,5 < i}

Let G be a thin spider. Then

me(G, i) = max{mec(Ga, j) + j(IK| = j") + j'(n2 = j) +
(i—j—j) 04,4 <i}

For P,-sparse graphs (i.e., (5,1)-graphs), Lemmas 2 and 3 are sufficient to

compute all the values me(G',4) for all graphs associated with nodes in the
decomposition tree. Thus, we obtain:

Corollary 3. There exists an O(N?) time algorithm to compute the simple maz-
cut for a Py-sparse graph.

|Vi] < q and the characteristic of G; is a split graph If we have a
decomposition tree of (gq,q — 4)-graphs, then there is one remaining case: G is
obtained from G; and G5 by the operation corresponding to a 2-labeled node,
and (G; has less than ¢ vertices. In this case the vertex set of G5 acts as a module,
i.e., every vertex of o has exactly the same set of neighbors in G;. Let K be
the set of vertices of Gy which are adjacent to all vertices of Gs.

Let me(Gh, 4, j') be the maximum cut in G; with exactly j vertices in K and
j' vertices in V; — K. Since G; is constant size the numbers mc(Gy,j,j') can
easily be computed in constant time.

Lemma 4. Let G, Gi, G2, K be as above. Suppose that |V1| < q and the char-
acteristic of G1 is a split graph. Then

me(@G, i) = max{me(Ga, j) + me(Gy,j',i—j —j') +
JUK|=3") 45 (ne =)+ (i—35—j") : 0<4,5 <i}

Now, with Lemma 4, and Lemmas 2 and 3, we obtain:

Theorem 6. There exists an O(N*) time algorithm for the SIMPLE MAX-CUT
problem on (q,q — 4)-graphs for each constant q.
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5 Concluding remarks

This paper considers two classes of graphs: indifference graphs and (q,q — 4)-
graphs. Both classes possess nice decomposition properties which we make use
of in the described algorithms for SIMPLE MAX-CUT. Also, both graph classes we
study are related to split graphs, a class of graphs for which SIMPLE MAX-CUT
is known to be hard.

A linear-time algorithm for the recognition of indifference graphs was pre-
sented by de Figueiredo et al. [10]. The algorithm partitions in linear time the
vertex set of an indifference graph into sets of twin vertices, i.e., vertices of the
graph that belong to the same set of maximal cliques.

Given a graph G with a bounded number of maximal cliques, the partition
of G into sets of twins contains a bounded number k of sets. Hence, we can
compute mc(@) in polynomial time, by maximizing a function on k variables
x, that assume integer values in a limited region of the space, i.e., on a finite
domain. This simple argument establishes the polynomial upper bound O(N*)
for the max-cut problem for a class of graphs with a bounded number of maximal
cliques.

One goal of this paper was to establish a linear time upper bound for the
computation of me(G) for a split-indifference graph G, by computing the value
of me(G) in constant time, given that we can in linear time determine which
case of the computation we are in. We leave it as an open problem to extend the
proposed solution to the whole class of indifference graphs.

Another goal reached by this paper was to extend to the whole class of
(g, q — 4)-graphs the known solution of SIMPLE MAX-CUT for cographs. We leave
it as an open problem to find a more efficient polynomial-time algorithm for the
computation of me(G) for a (¢, q — 4)-graph G.
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