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Simple Max-Cut for Split-Indi�erene Graphsand Graphs with Few P4'sHans L. Bodlaender1, Celina M. H. de Figueiredo2, Marisa Gutierrez3,Ton Kloks4, and Rolf Niedermeier51 Institute of Information and Computing Sienes, Utreht University, Padualaan14, 3584 CH Utreht, The Netherlands. hansb�s.uu.nl2 Instituto de Matem�atia and COPPE, Universidade Federal do Rio de Janeiro,Caixa Postal 68530, 21945-970 Rio de Janeiro, RJ, Brazil. elina�os.ufrj.br3 Departamento de Matem�atia, Universidad Naional de La Plata, C. C. 172, (1900)La Plata, Argentina. marisa�mate.unlp.edu.ar4 klokskloks�zonnet.nl5 Wilhelm-Shikard-Institut f�ur Informatik, Universit�at T�ubingen, Sand 13, D-72076T�ubingen, Fed. Rep. of Germany. niedermr�informatik.uni-tuebingen.de.Abstrat. The simple max-ut problem is as follows: given a graph,�nd a partition of its vertex set into two disjoint sets, suh that thenumber of edges having one endpoint in eah set is as large as possible.A split graph is a graph whose vertex set admits a partition into a stableset and a lique. The simple max-ut deision problem is known to beNP-omplete for split graphs. An indi�erene graph is the intersetiongraph of a set of unit intervals of the real line. We show that the simplemax-ut problem an be solved in linear time for a graph that is bothsplit and indi�erene. Moreover, we also show that for eah onstantq, the simple max-ut problem an be solved in polynomial time for(q; q� 4)-graphs. These are graphs for whih no set of at most q vertiesindues more than q � 4 distint P4's.AMS lassi�ation: 68Q25, 05C85, 05C17.Keywords: analysis of algorithms and problem omplexity, eÆient algo-rithms, graph deomposition algorithms, max-ut problem.1 IntrodutionThe maximum ut problem (or the maximum bipartite subgraph problem)asks for a bipartition of the graph (with edge weights) with a total weight as largeas possible. In this paper we onsider only the simple ase, i.e., all edges in thegraph have weight one. Then the objetive of this simple max-ut problem isto delete a minimum number of edges suh that the resulting graph is bipartite.Making a graph bipartite with few edge deletions has many appliations [26℄. Avery reent one is found in the emerging �eld of SNP (single nuleotide polymor-phism) analysis in omputational moleular biology, e.g., see [11, 27℄. Aiming foreÆient algorithms, we only onsider the unweighted ase sine the lasses of
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graphs we onsider in this paper ontain all omplete graphs and the (weighted)maximum ut problem is NP-omplete for every lass of graphs ontaining allomplete graphs [21, 26℄.As simple max-ut is NP-omplete in general, there are basially twolines of researh to ope with its omputational hardness. First, one may studypolynomial-time approximation algorithms (it is known to be approximablewithin 1.1383, see [13℄) or try to develop exat (exponential-time) algorithms(see [15℄ for an algorithm running in time 2m=3 �mO(1), where m is the numberof edges in the graph). Approximation and exat algorithms both have theirdrawbaks, i.e., non-optimality of the gained solution or poor running time evenfor relatively small problem instane sizes. Hene, the seond line of researh|aspursued in this paper|is to determine and analyze speial graph strutures thatmake it possible to solve the problem eÆiently and optimally. This leads to thestudy of speial graph lasses. (Have a look at the lassis [14, 9℄ for general infor-mation on numerous graph lasses.) For example, it was shown that the simplemax-ut problem remains NP-omplete for obipartite graphs, split graphs, andgraphs with hromati number three [6℄. On the positive side, the problem anbe eÆiently solved for ographs [6℄, linegraphs [1℄, planar graphs [24, 16℄, andfor graphs with bounded treewidth [29℄.In this paper we onsider two lasses of graphs, both of whih possess niedeomposition properties whih we make use of in the algorithms for simplemax-ut to be desribed. Also, both graph lasses we study are related tosplit graphs. An indi�erene graph is the intersetion graph of a set of unitintervals of the real line. (See [23℄ for more information on intersetion graphsand their appliations in biology and other �elds.) A split graph is a graph whosevertex set admits a partition into a stable set and a lique. Ortiz, Maulan,and Szwar�ter [25℄ haraterized graphs that are both split and indi�erenein terms of their maximal liques, and used this haraterization to edge-olourthose graphs in polynomial time. First, we show that this haraterization alsoleads to a linear-time solution for the simple max-ut problem for graphs thatare both split and indi�erene.Seond, we study the lass of (q; q � 4)-graphs (also known as graphs withfew P4's [4℄ and introdued in [2℄). These are graphs for whih no set of atmost q verties indues more than q� 4 distint P4's. (A P4 is a path with fourverties.) In this terminology, the ographs are exatly the (4; 0)-graphs. Thelass of (5; 1)-graphs are alled P4-sparse graphs. Jamison and Olariu [20℄ showedthat (q; q � 4)-graphs allow a nie deomposition tree similar to ographs [20℄.This deomposition an be used to �nd fast solutions for several in general NP-omplete problems (see, e.g., [3, 22℄). Also using this deomposition, we show thatthe simple max-ut problem an be solved in polynomial time for (q; q � 4)-graphs for every onstant q.
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2 PreliminariesIn this paper, G denotes a simple, undireted, �nite, onneted graph, and V (G)and E(G) are respetively the vertex and edge sets of G. The vertex-set size isdenoted by jV (G)j = N , and KN denotes the omplete graph on N verties. Astable set (or independent set) is a set of verties pairwise non-adjaent in G.A lique is a set of verties pairwise adjaent in G. A maximal lique of G is alique not properly ontained in any other lique. A subgraph of G is a graphH with V (H) � V (G) and E(H) � E(G). For X � V (G), we denote by G[X ℄the subgraph indued by X , that is, V (G[X ℄) = X and E(G[X ℄) onsists of thoseedges of E(G) having both ends in X .Given nonempty subsets X and Y of V (G), the symbol (X;Y ) denotes thesubset fxy 2 E(G) : x 2 X; y 2 Y g of E(G). A ut K of a graph G is the set ofedges (S; V (G) n S), de�ned by a subset S � V (G). We often write S instead ofV (G) nS. We also write Æ(S) for the set of edges with exatly one endpoint in S(and the other endpoint in V (G)nS). By jKj we denote the number of edges in theut K and `(K) is the number of edges in E(G)nK, i.e., the number of edges thatare lost by the ut K. A max-ut K is a ut suh that jKj is as large as possible.The (simple) max-ut problem onsiders the omputation of two omplementaryparameters of a graphG:m(G) = maxfjKj : K is a ut of Gg = maxS�V jÆ(S)j,the maximum number of edges in a ut of G; and `(G) = jE(G)j � m(G),the minimum number of edges lost by a ut of G (making the remaining graphbipartite). Instead of alulatingm(G) diretly it is sometimes more onvenientto alulate �rst, for i = 1; : : : ; n, the values m(G; i) = maxS�V;jSj=i jÆ(S)j.In the sequel, the following observations will be helpful.Remark 1 For KN , the omplete graph on N verties, we have:{ If (S; S) is a max-ut of KN , then jSj = bN2 ;{ m(KN ) = bN2  � dN2 e.We say that a max-ut in a omplete graph is a balaned ut.Remark 2 Let H be a subgraph of a graph G and let K be a ut of G. If`(K) = `(H), then K is a max-ut of G.Proof. Sine H is a subgraph of G, any ut N of G satis�es `(N ) � `(H) = `(K).Hene K is a ut of minimum loss in G, in other words, K is a max-ut of G.Remark 3 Let jV (G)j = N and let S be a subset of V (G) satisfying:{ jSj = bN2 ;{ every vertex of S is adjaent to every vertex of S.Then (S; S) is a max-ut of G.
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Proof. Clearly the ut (S; S) has bN2  � dN2 e edges, the maximum possible size ofa ut in G.The union of two graphs G1 and G2, denoted by G1 [G2, is the graph suhthat V (G1 [G2) = V (G1) [ V (G2) and E(G1 [G2) = E(G1) [ E(G2). By wayof ontrast, G1 nG2 denotes the subgraph of G1 indued by V (G1)nV (G2). The(disjoint) sum of two graphs G1 and G2 makes every vertex of G1 adjaent toevery vertex of G2.3 Linear-time solution for split-indi�erene graphsSome preliminariesAn interval graph is the intersetion graph of a set of intervals of the real line(f. [9, 23℄ for general expositions). In ase of unit intervals the graph is alledunit interval, proper interval, or indi�erene graph. We shall adopt the lattername, to be onsistent with the terminology of indi�erene orders, de�ned next.(For a reent proof that the lass of unit interval graphs oinides with that ofthe proper interval graphs, see [8℄.) Indi�erene graphs an be haraterized asthose interval graphs without an indued law, (i.e., a K1;3). Indi�erene graphsan also be haraterized by a linear order: their verties an be linearly orderedso that the verties ontained in the same maximal liques are onseutive [28℄.We all suh an order an indi�erene order.A split graph is a graph whose vertex set an be partitioned into a stable setand a lique. A split-indi�erene graph is a graph that is both split and indi�er-ene. We shall use the following haraterization of split-indi�erene graphs interms of their maximal liques due to [25℄.Theorem 1. Let G be a onneted graph. Then G is a split-indi�erene graphif and only if{ G = KN , or{ G = Km [Kn, where n � m > 1, and Km nKn = K1, or{ G = Km [ Kn [ Kl, where n � m > 1, n � l > 1, and Km n Kn = K1,Kl nKn = K1. Moreover, V (Km) \ V (Kl) = ; or V (Km) [ V (Kl) = V (G).This haraterization was applied to obtain a polynomial-time algorithm toedge olour split-indi�erene graphs [25℄. In the sequel, we show how to apply thisharaterization to obtain a linear-time algorithm to solve the max-ut problemfor split-indi�erene graphs.The balaned ut is not always maximalA natural approah [7℄ for solving max-ut for indi�erene graphs is the fol-lowing. Let v1; v2; : : : ; vt be an indi�erene order for G and de�ne K = (S; S)as follows: Plae in S all verties with odd labels and plae in S the remain-ing verties (i.e., those with even labels). By de�nition of K and by Remark 1,
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K \E(M) is a max-ut of M, for every graph M indued by a maximal liqueof G. This natural approah de�nes a ut that is loally balaned, i.e., it givesa ut that is a max-ut with respet to eah maximal lique. The following ex-ample shows that K is not neessarily a max-ut of G. Consider the indi�erenegraph G with �ve (ordered) verties v1; v2; v3; v4; v5, where fv1; v2; v3; v4g induea K4, and fv3; v4; v5g indue a K3. Note that the ut (fv1; v3; v5g; fv2; v4g) has5 edges, whereas the ut (fv1; v2; v5g; fv3; v4g) has 6 edges. Therefore, this ap-proah works only when the indi�erene graph G has only one maximal lique,i.e., when G is a omplete graph whih overs the �rst point in Theorem 1.Let G = Kn [Km, where jV (Kn) \ V (Km)j = i. Call Ki the graph induedby the verties of the intersetion. We say that a ut K of G is ompatible if:a) K \ E(Kn) is a max-ut of Kn and K \ E(Km) is a max-ut of Km;b) Among all uts K of G satisfying ondition a), jK \ E(Ki)j is minimal.Clearly, the ut proposed by the natural approah satis�es ondition a) butnot neessarily ondition b) of the de�nition of ompatible ut. Clearly, for theexample above the ompatible ut gives the maximum ut. However, our subse-quent study of the max-ut problem for graphs with two maximal liques showsthat it is not always possible to de�ne a max-ut whih is a ompatible ut forthe graph. We atually show that there are graphs for whih the max-ut is notbalaned with respet to any maximal lique of the graph.In the sequel, we show how to use this approah|onsidering uts K suhthat loally K \ E(M) is a max-ut of M, for every graph M indued by amaximal lique|to �nd �rst a max-ut in a graph with two maximal liques(whih overs the seond point in Theorem 1) and then to �nd a max-ut in asplit-indi�erene graph (by dealing with the third point in Theorem 1).Graphs with two maximal liquesIn this setion we onsider general graphs with preisely two maximal liques.Note that a graph with preisely two maximal liques is neessarily an indi�er-ene graph but not neessarily a split graph.Lemma 1. Let G = Kn[Km with n � m > i � 1, where jV (Kn)\V (Km)j = i.Call Ki the graph indued by the verties of the intersetion. Let (S; S) be a utof G. Let x = jS \ V (Ki)j. Suppose x � b i2. Then, the maximum value of a ut(S; S) having x verties in S \ V (Ki) is obtained by plaing the verties outsidethe intersetion Ki as follows:{ Plae in S the largest possible number that is less than or equal to dn2 e � xof verties of Kn nKi;{ Plae in S the largest possible number that is less than or equal to dm2 e � xof verties of Km nKi.
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Proof. Let N = (S; S) be a ut of G. Sine G ontains two maximal liques, i.e.,G = Kn [Km, with jV (Kn) \ V (Km)j = i, we may ount the number of edgesin the ut N as follows:jN j = jN \E(Kn)j+ jN \ E(Km)j � jN \E(Ki)j:Now beause x = jS \ V (Ki)j, we have jN \ E(Ki)j = x(i � x). Hene, byplaing the verties outside the intersetion Ki as desribed, we get a ut aslose as possible to the balaned ut with respet to both Kn and Km.By using the notation of Lemma 1, let M(x) be the number of edges of amaximum ut of G having x verties of Ki in S. By Lemma 1, M(x) is well de-�ned as a funtion of x in the interval [0; b i2℄. We onsider three ases aordingto the relation between i and dm2 e, and i and dn2 e. In eah ase, our goal is to�nd the values of x in the interval [0; b i2℄ whih maximize M(x).Case 1: i � dm2 e � dn2 e In this ase, x � dm2 e and i�x � dm2 e. Hene, vertiesoutside the intersetion an be plaed aordingly to get balaned partitions forboth Kn and Km. Then M(x) is equal to M1(x), whih is de�ned as follows:M1(x) = dn2 ebn2  + dm2 ebm2  � x(i � x): We want to maximize M1(x) over theinterval [0; b i2℄. In this ase, we have just one maximum, whih ours at x = 0.Case 2: dm2 e < i � dn2 e In this ase, we still have x � dm2 e, but not neessarilyi� x � dm2 e. If i� x � dm2 e, then the funtion M(x) is equal to M1(x) above.Otherwise, i� x > dm2 e, and it is not possible to get a balaned partition withrespet toKm: By Lemma 1, the maximum ut in this ase is obtained by plaingall verties of Km nKi in S. Therefore, the funtion M(x) isM(x) = �M2(x) = dn2 ebn2 + (m� i)(i� x) for 0 � x < i� dm2 eM1(x) = dn2 ebn2 + dm2 ebm2  � x(i� x) for i� dm2 e � x � b i2It is easy to see that M(x) is a funtion that is ontinuous and dereasingwith maximum at x = 0.Case 3: dm2 e � dn2 e < i In this ase, we distinguish three intervals for i� xto be in:If i�x � dm2 e, then verties outside the intersetion an be plaed aordinglyto get balaned partitions for both Kn and Km, and M(x) =M1(x).If dm2 e < i� x � dn2 e, then only Kn gets a balaned partition and M(x) =M2(x).Finally, if i�x > dn2 e, then a maximum ut is obtained by plaing all vertiesoutside the intersetion in S and we get a new funtion M3(x).Therefore, a omplete desription of the funtion M(x) isM(x) =8<:M3(x) = (i� x)(n+m� 2i+ x) for 0 � x < i� dn2 eM2(x) = dn2 ebn2 + (m� i)(i� x) for i� dn2 e � x < i� dm2 eM1(x) = dn2 ebn2 + dm2 ebm2  � x(i� x) for i� dm2 e � x � b i2
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Observe that this funtion is also ontinuous but not always dereasing. Thefuntion M3(x) is a parabola with apex at x = 2i�N2 , where N = m + n � iis the total number of verties of G. For this reason, we distinguish two ases,aording to the relation between i and N , as follows: M(x) has maximum atx = 0 when i � bN2 , and M(x) has maximum at x = 2i�N2 when i > bN2 .Sine x takes values on the interval [0; b i2℄, we have two possible values for x inthis ase: the maximum ut has either i� bN2  or i� dN2 e verties of Ki in S.In summary, we have shown:Theorem 2. Let G = Kn[Km with n � m > i � 1, where jV (Kn)\V (Km)j =i. Call Ki the graph indued by the verties of the intersetion. Let v1; v2; : : : ; vNbe an indi�erene order of G suh that verties v1; v2; : : : ; vn indue a Kn, ver-ties vn�i; vn�i+1; : : : ; vn indue a Ki ontaining the verties of the intersetion,and vn�i; vn�i+1; : : : ; vN indue a Km. A maximum ut of G is obtained asfollows:{ If i � dm2 e � dn2 e, then the ompatible ut (S; S) that plaes in S the �rstdn2 e verties, and the last dm2 e verties, ontains zero edges of Ki, and is amaximum ut of G.{ If dm2 e < i � dn2 e, then the ut (S; S) that plaes in S the �rst dn2 e verties,and the last m � i verties, ontains zero edges of Ki, is not a ompatibleut, and is a maximum ut of G.{ If dm2 e � dn2 e < i, then we distinguish two ases. If i � bN2 , then the ut(S; S) that plaes in S the �rst n � i verties, and the last m � i verties,ontains zero edges of Ki, is not a ompatible ut, and is a maximum utof G. If i > bN2 , then the ut (S; S) that plaes in S dN2 e verties if theintersetion is not a ompatible ut, and is a maximum ut of G.Split-indi�erene graphs with three maximal liquesIn this setion we onsider split-indi�erene graphs with preisely three maximalliques. By Theorem 1, any suh graph G = Km [Kn [Kl, with n � m, n � l,satis�esKmnKn = f1g,KlnKn = ftg, i.e., the vertex set V (G) = V (Kn)[f1; tg.In other words, we have jV (G)j = N = n + 2. In addition, there exists anindi�erene order for G having vertex 1 �rst, vertex t last, and the remainingverties between 1 and t.To obtain a solution for the max-ut problem for a split-indi�erene graphwith preisely three maximal liques, we shall onsider three ases.Case 1: vertex 1 is adjaent to at most bn2  verties or vertex t isadjaent to at most bn2  verties In the preeding subsetion we studiedthe ase of two maximal liques. In partiular, we got the easy ase that if agraph H = Kn [Km, with n � m and suh that Km nKn = f1g, then thereexists a max-ut of H that plaes on the same side the dn2 e verties that areloser to vertex 1 with respet to the indi�erene order of H , and plaes vertex1 and the remaining bn2  verties on the opposite side.
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Now suppose vertex t is adjaent to at most bn2  verties. Let (S; V (H)nS) bea max-ut of H that plaes all neighbours of t on the same side S. By Remark 2,(S; V (H)nS[ftg) is a max-ut of the entire graph G, beause (S; V (H)nS[ftg)looses the same number of edges as the ut (S; V (H) n S).Case 2: both verties 1 and t are adjaent to at least dn2 e verties butthere are not bN2  verties adjaent to both 1 and t Note that everyvertex of Kn is adjaent to 1 or to t. Let S ontain vertex 1 and a set of dn2 eneighbours of t that inludes all nonneighbours of 1. The only \missing" edge inthe ut (S; S) is the edge 1t, an edge not present in G. Sine there are not bN2 verties adjaent to both 1 and t, it is not possible to de�ne a ut for G largerthan (S; S) by plaing verties 1 and t on the same side.Case 3: there exist bN2  verties adjaent to both 1 and t Let S be aset of bN2  verties adjaent to both 1 and t. Remark 3 justi�es (S; S) to be amax-ut of G.Theorem 3. Let G be a split-indi�erene graph with three maximal liques Km,Kn, and Kl, with n � m, n � l, and satisfying Km nKn = f1g, Kl nKn = ftg.Let v1; v2; : : : ; vN be an indi�erene order of G having vertex 1 �rst, vertex tlast. A maximum ut of G is obtained as follows:{ If vertex t is adjaent to at most bn2  verties, then the ut (S; S) that plaesin S vertex 1 and the bn2  verties that are loser to t with respet to theindi�erene order is a maximum ut of G. An analogous result follows ifvertex 1 is adjaent to at most bn2  verties.{ If both verties 1 and t are adjaent to at least dn2 e verties but there arenot bN2  verties adjaent to both 1 and t, then the ut (S; S) that plaesin S vertex 1 and the dn2 e verties that are loser to t with respet to theindi�erene order is a maximum ut of G.{ If there exist bN2  verties adjaent to both 1 and t, then the ut (S; S) thatplaes in S a set of bN2  verties adjaent to both 1 and t is a maximum utof G.Altogether, we obtain the following main result.Corollary 1. Simple max-ut an be solved in linear time for split-indi�erenegraphs.Proof. The result diretly follows from ombining Theorem 1 with Remark 1,Theorem 2, and Theorem 3.
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4 Polynomial-time solution for (q; q � 4)-graphsSome preliminaries A graph is a (q; t)-graph if no set of at most q vertiesindues more than t distint P4's. The lass of ographs are exatly the (4; 0)-graphs, i.e., ographs are graphs without indued P4. The lass of so-alledP4-sparse graphs oinides with the (5; 1)-graphs. The lass of P4-sparse graphswas extensively studied in [17{19, 12℄.It was shown in [3℄ that many problems an be solved eÆiently for (q; q�4)-graphs for eah onstant q. These results make use of a deomposition theoremwhih we state below. In this setion we show that this deomposition an also beused to solve the simple max-ut problem. In order to state the deompositiontheorem for (q; q � 4)-graphs we need some preliminaries.Reall that a split graph is a graph of whih the vertex set an be split intotwo sets K and I suh that K indues a lique and I indues an independentset in G. A spider is a split graph onsisting of a lique and an independentset of equal size (at least two) suh that eah vertex of the independent set haspreisely one neighbor in the lique and eah vertex of the lique has preiselyone neighbor in the independent set, or it is the omplement of suh a graph.We all a spider thin if every vertex of the independent set has preisely oneneighbor in the lique. A spider is thik if every vertex of the independent set isnon-adjaent to preisely one vertex of the lique. The smallest spider is a pathwith four verties (i.e., a P4) and this spider is at the same time both thik andthin.The simple max-ut problem is easy to solve for spiders:Remark 4 Let G be a thin spider with 2n verties where n � 3. Then m(G) =bn24 + n. If G is a thik spider then m(G) = n(n� 1).A graph G is p-onneted if for every partition into two non-empty sets thereis a rossing P4, that is a P4 with verties in both sets of the partition. Thep-onneted omponents of a graph are the maximal indued subgraphs whihare p-onneted. A p-onneted graph is separable if there is a partition (V1; V2)suh that every rossing P4 has its midpoints in V1 and its endpoints in V2.Reall that a module is a non-trivial (i.e., not ; or V ) set of verties whihhave equivalent neighborhoods outside the set. The harateristi of a graph isobtained by shrinking the non-trivial modules to single verties. It an be shown(see [2, 20℄) that a p-onneted graph is separable if and only if its harateristiis a split graph.Our main algorithmi tool is the following strutural theorem due to [20℄.Theorem 4. For an arbitrary graph G exatly one of the following holds:{ G or G is disonneted.{ There is a unique proper separable p-onneted omponent H of G with sep-aration (V1; V2) suh that every vertex outside H is adjaent to all vertiesof V1 and to none of V2.{ G is p-onneted.
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Furthermore, the following haraterization of p-onnetedness for (q; q� 4)-graphs was obtained in [2℄ (also see [4℄).Theorem 5. Let G = (V;E) be a (q; q � 4)-graph whih is p-onneted. Theneither jV j < q or G is a spider.Theorem 4 and Theorem 5 lead to a binary deomposition tree for (q; q� 4)-graphs (also see [3℄ for more details). This deomposition tree an be found inlinear time [5℄. The leaves of this tree orrespond with spiders or graphs withless than q verties (this reets the last point of Theorem 4 and Theorem 5).The internal nodes of this tree have one of three possible labels. If the label ofan internal node is 0 or 1, then the graph orresponding with this node is thedisjoint union or the sum of the graphs orresponding with the hildren of thenode (this reets the �rst point of Theorem 4). If the label of the node is 2(this reets the seond point of Theorem 4), one of the graphs, w.l.o.g. G1,has a separation (V 11 ; V 21 ) and it is either a spider or a graph with less than qverties of whih the harateristi is a split graph (Theorems 4 and 5), and G2is arbitrary. If G1 is a spider, all verties of G2 are made adjaent exatly toall verties of the lique (indued by V 11 ) of G1. If G1 is a graph of whih theharateristi is a split graph, all verties of G2 are made adjaent exatly to allverties (i.e., V 11 ) of every lique module of G1.In the following subsetions we briey desribe the method to ompute thesimple max-ut for graphs with few P4's. The main idea of the algorithm isthat we ompute for eah node of the deomposition tree all relevant values ofm(G0; i), G0 being the graph orresponding with this node. The table of valuesfor suh a node is omputed, given the tables of the hildren of the node. In thesubsequent paragraphs, we disuss the methods to do this, for eah of the typesof nodes in the deomposition tree. One we have the table of the root node,i.e., all values m(G; i), we are done.Cographs We review the algorithm for the simple max-ut problem forographs (i.e., (4; 0)-graphs) whih was published in [6℄. A ograph whih isnot a single vertex is either the sum or the union of two (smaller) ographs. Inother words: ographs have a deomposition tree with all internal nodes labelled0 or 1.Lemma 2. Let G = (V;E) be the union of G1 = (V1; E1) and G2 = (V2; E2).Thenm(G; i) = maxfm(G1; j) +m(G2; i� j) : 0 � j � i ^jV1j � j ^ jV2j � i� jgLet G = (V;E) be the sum of G1 = (V1; E1) and G2 = (V2; E2). Thenm(G; i) = maxfm(G1; j) +m(G2; i� j) + j(jV2j � (i� j)) +(jV1j � j)(i� j) : 0 � j � i ^ jV1j � j ^ jV2j � i� jgCorollary 2. There exists an O(N2) time algorithm to ompute the simple max-ut of a ograph.
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P4-sparse graphs The deomposition tree (as de�ned above) for graphs thatare P4-sparse has nodes with label 0, 1, or 2 [17℄. Note that in the ase oflabel 2 we an assume here that the graph G1 is a spider (see the disussionafter Theorems 4 and 5, and [18℄). In the lemma below, we assume G is obtainedfrom G1 and G2 as desribed above by the operation of a 2-labeled node. Let Kbe the lique and S be the independent set of G1. Let ni denote the number ofverties of Gi. Note that every vertex of G2 is adjaent to every vertex of K.Lemma 3. Let G, G1, G2, S, and K be as above. Let G1 be a thik spider.Then m(G; i) = maxfm(G2; j) + j(jKj � j0) + j0(n2 � j) +(i� j � j0)(jKj � 1) : 0 � j; j0 � igLet G1 be a thin spider. Thenm(G; i) = maxfm(G2; j) + j(jKj � j0) + j0(n2 � j) +(i� j � j0) : 0 � j; j0 � igFor P4-sparse graphs (i.e., (5; 1)-graphs), Lemmas 2 and 3 are suÆient toompute all the values m(G0; i) for all graphs assoiated with nodes in thedeomposition tree. Thus, we obtain:Corollary 3. There exists an O(N3) time algorithm to ompute the simple max-ut for a P4-sparse graph.jV1j < q and the harateristi of G1 is a split graph If we have adeomposition tree of (q; q � 4)-graphs, then there is one remaining ase: G isobtained from G1 and G2 by the operation orresponding to a 2-labeled node,and G1 has less than q verties. In this ase the vertex set of G2 ats as a module,i.e., every vertex of G2 has exatly the same set of neighbors in G1. Let K bethe set of verties of G1 whih are adjaent to all verties of G2.Let m(G1; j; j0) be the maximum ut in G1 with exatly j verties in K andj0 verties in V1 � K. Sine G1 is onstant size the numbers m(G1; j; j0) aneasily be omputed in onstant time.Lemma 4. Let G, G1, G2, K be as above. Suppose that jV1j < q and the har-ateristi of G1 is a split graph. Thenm(G; i) = maxfm(G2; j) +m(G1; j0; i� j � j0) +j(jKj � j0) + j0(n2 � j) + (i� j � j0) : 0 � j; j0 � igNow, with Lemma 4, and Lemmas 2 and 3, we obtain:Theorem 6. There exists an O(N4) time algorithm for the simple max-utproblem on (q; q � 4)-graphs for eah onstant q.
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5 Conluding remarksThis paper onsiders two lasses of graphs: indi�erene graphs and (q; q � 4)-graphs. Both lasses possess nie deomposition properties whih we make useof in the desribed algorithms for simple max-ut. Also, both graph lasses westudy are related to split graphs, a lass of graphs for whih simple max-utis known to be hard.A linear-time algorithm for the reognition of indi�erene graphs was pre-sented by de Figueiredo et al. [10℄. The algorithm partitions in linear time thevertex set of an indi�erene graph into sets of twin verties, i.e., verties of thegraph that belong to the same set of maximal liques.Given a graph G with a bounded number of maximal liques, the partitionof G into sets of twins ontains a bounded number k of sets. Hene, we anompute m(G) in polynomial time, by maximizing a funtion on k variablesx, that assume integer values in a limited region of the spae, i.e., on a �nitedomain. This simple argument establishes the polynomial upper bound O(Nk)for the max-ut problem for a lass of graphs with a bounded number of maximalliques.One goal of this paper was to establish a linear time upper bound for theomputation of m(G) for a split-indi�erene graph G, by omputing the valueof m(G) in onstant time, given that we an in linear time determine whihase of the omputation we are in. We leave it as an open problem to extend theproposed solution to the whole lass of indi�erene graphs.Another goal reahed by this paper was to extend to the whole lass of(q; q� 4)-graphs the known solution of simple max-ut for ographs. We leaveit as an open problem to �nd a more eÆient polynomial-time algorithm for theomputation of m(G) for a (q; q � 4)-graph G.Aknowledgments We are grateful to J. Spinrad for pointing out that the max-ut problem is solvable in polynomial time for any lass of graphs with a boundednumber of maximal liques. Parts of this researh were done while Celina M. H.de Figueiredo visited Universidad Naional de La Plata supported by FAPERJ,and Marisa Gutierrez visited Universidade Federal do Rio de Janeiro supportedby FOMEC and FAPERJ. Rolf Niedermeier is supported by the DFG, EmmyNoether researh group \PIAF" (�xed-parameter algorithms), NI 369/4.Referenes1. C. Arbib. A polynomial haraterization of some graph partitioning problem. In-form. Proess. Lett., 26:223{230, 1987/1988.2. L. Babel. On the P4-struture of graphs, Habilitationsshrift , Zentrum f�ur Ma-thematik, Tehnishe Universit�at M�unhen, 1997.3. L. Babel, T. Kloks, J. Kratohv��l, D. Kratsh, H. M�uller, and S. Olariu. EÆientalgorithms for graphs with few P4's. Combinatoris (Prague, 1998). Disrete Math.,235:29{51, 2001.



LCNS, Vol 3059, pp. 87–99, Springer 2004

4. L. Babel and S. Olariu. On the struture of graphs with few P4s. Disrete Appl.Math., 84:1{13, 1998.5. S. Baumann. A linear algorithm for the homogeneous deomposition of graphs,Report No. M-9615, Zentrum f�ur Mathematik, Tehnishe Universit�at M�unhen,1996.6. H. L. Bodlaender and K. Jansen. On the omplexity of the maximum ut problem.In STACS 94, Leture Notes in Computer Siene 775, 769{780, Springer, Berlin,1994. Also in Nordi J. Comput., 7(1):14{31, 2000.7. H. L. Bodlaender, T. Kloks, and R. Niedermeier. Simple max-ut for unit intervalgraphs and graphs with few P4's. In Extended abstrats of the 6th Twente Workshopon Graphs and Combinatorial Optimization 12{19, 1999. Also in Eletroni Notesin Disrete Mathematis 3, 1999.8. K. P. Bogart and D. B. West. A short proof that `proper = unit', Disrete Math.,201:21{23, 1999.9. A. Brandst�adt, V. B. Le, and J. P. Spinrad, Graph Classes: a Survey. SIAMMonographs on Disrete Mathematis and Appliations. Soiety for Industrial andApplied Mathematis (SIAM), Philadelphia, PA, 1999.10. C. M. H. de Figueiredo, J. Meidanis, and C. P. de Mello. A linear-time algorithmfor proper interval graph reognition. Inform. Proess. Lett., 56:179{184, 1995.11. E. Eskin, E. Halperin, and R. M. Karp. Large sale reonstrution of haplotypesfrom genotype data. In RECOMB 2003, pp. 104{113, ACM Press, 2003.12. V. Giakoumakis, F. Roussel, and H. Thuillier. On P4-tidy graphs. Disrete Math-ematis and Theoretial Computer Siene, 1:17{41, 1997.13. M. X. Goemans and D. P. Williamson. Improved approximation algorithms formaximum ut and satis�ability problems using semide�nite programming. J. ACM,42:1115{1145, 1995.14. M. C. Golumbi, Algorithmi Graph Theory and Perfet Graphs, Aademi Press,New York, 1980.15. J. Gramm, E. A. Hirsh, R. Niedermeier, and P. Rossmanith. Worst-ase up-per bounds for MAX-2-SAT with appliation to MAX-CUT. Disrete Appl. Math.,130(2):139{155, 2003.16. F. O. Hadlok. Finding a maximum ut of a planar graph in polynomial time.SIAM J. Comput., 4:221{225, 1975.17. B. Jamison and S. Olariu. A tree representation for P4-sparse graphs. DisreteAppl. Math., 35:115{129, 1992.18. B. Jamison and S. Olariu. Reognizing P4-sparse graphs in linear time. SIAM J.Comput., 21:381{406, 1992.19. B. Jamison and S. Olariu. Linear time optimization algorithms for P4-sparsegraphs. Disrete Appl. Math., 61:155{175, 1995.20. B. Jamison and S. Olariu. p-omponents and the homogeneous deomposition ofgraphs. SIAM J. Disrete Math., 8:448{463, 1995.21. R. M. Karp. Reduibility among ombinatorial problems. Complexity of omputa-tion (R. E. Miller and J. W. Thather eds.), pp. 85{103, 1972.22. T. Kloks and R. B. Tan. Bandwidth and topologial bandwidth of graphs withfew P4's. In 1st Japanese-Hungarian Symposium for Disrete Mathematis and itsAppliations (Kyoto, 1999). Disrete Appl. Math., 115(1{3):117{133, 2001.23. T. A. MKee and F. R. Morris. Topis in Intersetion Graph Theory. SIAMMonographs on Disrete Mathematis and Appliations. Soiety for Industrial andApplied Mathematis (SIAM), Philadelphia, PA, 199924. G. I. Orlova and Y. G. Dorfman, Finding the maximal ut in a graph, Engrg.Cybernetis, 10:502{504, 1972.



LCNS, Vol 3059, pp. 87–99, Springer 2004

25. C. Ortiz Z., N. Maulan, and J. L. Szwar�ter. Charaterizing and edge-olouringsplit-indi�erene graphs. Disrete Appl. Math., 82(1{3):209{217, 1998.26. S. Poljak and Z. Tuza. Maximum uts and large bipartite subgraphs. DI-MACS Series in Disrete Mathematis and Theoretial Computer Siene (W. Cook,L. Lov�asz, and P. Seymour eds.), 20:181{244, Amer. Math. So., Providene, RI,1995.27. R. Rizzi, V. Bafna, S. Istrail, and G. Lania. Pratial algorithms and �xed-parameter tratability for the single individual SNP haplotypying problem. InWABI2002, Leture Notes in Computer Siene 2452, pp. 29{43, Springer, Berlin, 2002.28. F. S. Roberts. On the ompatibility between a graph and a simple order. J.Combinatorial Theory Ser. B, 11:28{38, 1971.29. T. V. Wimer. Linear algorithms on k-terminal graphs, PhD Thesis, Departmentof Computer Siene, Clemson University, South Carolina, 1987.


