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abstract. The r-Regular Induced Subgraph problem asks,
given a graph G and a non-negative integer k, whether G contains
an r-regular induced subgraph of size at least k, that is, an induced
subgraph in which every vertex has degree exactly r. In this pa-
per we examine its parameterization k-Size r-Regular Induced

Subgraph with k as parameter and prove that it is W [1]-hard. We
also examine the parameterized complexity of the dual parameterized
problem, namely, the k-Almost r-Regular Graph problem, which
asks for a given graph G and a non-negative integer k whether G can
be made r-regular by deleting at most k vertices. We show that this
problem is in FPT by proving the existence of a problem kernel of
size O(kr(r + k)2).

1 Introduction

Regular graphs as well as regular subgraphs have been intensively studied
from a structural point of view (e.g., [1]). An interesting problem related
to regular graphs is to decide whether a given graph contains an regular
subgraph. One of the first problems of this kind was stated by Garey and
Johnson: Cubic Subgraph, i.e., the problem of deciding whether a given
graph contains a 3-regular subgraph, is NP-complete [9]. This result was
later expanded in [17], where it was shown that Cubic Subgraph is NP-
complete on planar graphs with maximum degree 7. Moreover, it was shown
by Stewart that Cubic Subgraph is also NP-complete on bipartite graphs
with maximum degree 4 [19]. The same author showed that the more general
problem of deciding whether a given graph contains an r-regular subgraph
for some fixed degree r > 3 is NP-complete on general graphs as well as
on planar graphs [18] (where in the latter case only r = 4 and r = 5 were
considered, since any planar graph contains a vertex of degree at most 5).
Note that this problem is polynomial-time solvable for r ≤ 2 [4].
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We consider a variant of this problem, where we ask whether a given
graph G contains an induced subgraph of at least k vertices that is r-regular,
and we call it r-regular induced subgraph for any r ≥ 0. The exact
version of this problem is obtained if we ask for an induced subgraph of size
exactly k (for the difference between the original and the exact version of
the problem, see Figure 1). In this paper, we examine the following dual
parameterizations of the problem.

k-Almost r-Regular Graph:
Input: A graph G = (V, E) and an integer k.
Question: Is there a vertex subset S ⊆ V of size at most k such that G[V \ S]
is r-regular?

k-Size r-Regular Induced Subgraph

Input: A graph G = (V, E) and an integer k.
Question: Is there a vertex subset S ⊆ V of size at least k such that G[S]
is r-regular?

Note that for r = 0, r-Regular Induced Subgraph is equivalent to
Independent Set. In this paper, we show that r-Regular Induced

Subgraph is NP-complete for r ≥ 1 even if we restrict the input of the
problem to planar graphs or triangle free planar graphs (for planar graphs,
we consider r ≤ 5 and for triangle free planar graphs we consider1 r ≤ 3).
Our reduction also implies that k-Size r-Regular Induced Subgraph is
W [1]-hard for any r ≥ 0, suggesting that no FPT algorithm exists for this
parameterized problem. However, the dual problem, k-Almost r-Regular

Graph, is easier. We design an FPT algorithm running in O(n(k + r) +
kr2(k + r)2 · (r + 2)k) steps, where n is the number of vertices of the input
graph. Our algorithm is based on the existence of a reduction of k-Almost

r-Regular Graph to a problem kernel of size O(kr(k+r)2) (in the special
case where r = 1, this size can be improved to O(k2)).

r-Regular Induced Subgraph belongs to the general category of sub-
graph problems, i.e., problems that ask for the existence of an (induced)
subgraph with a certain property (e.g., being r-regular). Most of the prob-
lems of this type concern hereditary properties (a property is hereditary if
it holds for any induced subgraph of G whenever it holds for G) and can be
classified as NP-hard [13, 20]. Basically all such problems, when parameter-
ized by the number of vertices that need to be removed in order to obtain
the desired property, admit fixed-parameter algorithms provided that the
corresponding property is hereditary [2, 12]. For an example of related re-

1This restriction follows from Euler’s formula.
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Figure 1. For 3-Regular Induced Subgraph, the instance (G, k) is a
yes-instance iff k ∈ {0, 1, . . . , 17, 18}. However, for its “exact version”, the
same instance is a yes-instance iff k ∈ {4, 8, 12, 16, 18}.

sults, we refer the reader to the results in [14], [8, 16], and [5, 11] where the
imposed property is chordality, 2-colorability, and acyclicity, respectively.

Notice that r-regularity is not a hereditary property as subgraphs of r-
regular graphs are generally not r-regular, for r ≥ 1. This suggests that
the existing results do not help to prove hardness or fixed-parameter in-
tractability for the problems we consider in this paper. Moreover, the lack
of heredity makes it harder to design parameterized algorithms. Another
vertex removal problem with a non-hereditary property was examined in [6]
where it is shown that the problem of converting a given graph into a grid
by vertex/edge removals and additions is fixed-parameter tractable.

The fact that r-regularity is not a hereditary property makes it possible
to define different versions for both problems above if, in their questions, we
ask for a vertex set S of size exactly k (instead of one of size at most k). As
the present “≤”-versions of the problems are weaker than (can be reduced
to) their “=” counterparts, we will prove all of our hardness results for the
above weaker setting (see Figure 1). However, in order to obtain a stronger
result, all the algorithms in this paper are designed for the “exact” versions
of our problems (modifications for solving the original versions are easy and
have the same running times).

The remaining document is organized as follows: First, we shortly intro-
duce necessary definitions from parameterized complexity theory and graph
theory in Section 2. Section 3 is dedicated to hardness results. In Section 4
we present the problem kernel and the exact algorithm for k-Almost r-
Regular Graph.

2 Preliminaries

In this paper we deal with fixed-parameter algorithms that emerge from
the field of parameterized complexity analysis [7, 15]. An instance of a pa-
rameterized problem consists of a problem instance I and a parameter k.
A parameterized problem is fixed-parameter tractable if it can be solved
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in f(k) · |I|O(1)
time, where f is a computable function depending only on

the parameter k, not on the input size |I|. One of the common methods to
prove that a problem is fixed-parameter tractable is to provide data reduc-
tion rules that lead to a problem kernel : Given a problem instance (I, k), a
data reduction rule replaces that instance by a another instance (I ′, k′) in
polynomial time, such that (I, k) is a yes-instance iff (I ′, k′) is a yes-instance.
An instance to which none of a given set of reduction rules applies is called
reduced with respect to the rules. A parameterized problem is said to have
a problem kernel if, after the application of the reduction rules, the result-
ing reduced instance has size f(k) for a function f depending only on k.
Analogously to classical complexity theory, Downey and Fellows [7] devel-
oped a framework providing a reducibility and completeness program. A
parameterized reduction from a parameterized language L to another pa-
rameterized language L′ is a function that, given an instance (x, k), com-
putes in time f(k) ·nO(1) an instance (x′, k′) (with k′ depending only on k)
such that (x, k) ∈ L ⇔ (x′, k′) ∈ L′. The basic complexity class for fixed-
parameter intractability is W [1] as there is good reason to believe that
W [1]-hard problems are not fixed-parameter tractable [7].

In this paper we assume that all graphs are simple and undirected. For
a graph G = (V, E) we write V (G) to denote its vertex set and E(G) to
denote its edge set. For a subset V ′ ⊆ V , by G[V ′] we mean the subgraph
of G induced by V ′. We write G\V ′ to denote the graph G[V \V ′]. If v ∈ V
we also write G− v instead of G \ {v}. The (open) neighborhood N(V ′) of
a given set V ′ ⊆ V is the set of all vertices in V \ V ′ adjacent to some
vertex in V ′. We sometimes write NG(V ′) to emphasize that we refer to the
open neighborhood of V ′ within the graph G. We write Kr to denote the
complete graph with r vertices.

In the next section, we show that k-Almost r-Regular Graph as well
as k-Size r-Regular Induced Subgraph are NP-complete. Moreover,
we show that the latter problem is also W [1]-hard.

3 Hardness and Completeness Results

In this section we first show that r-Regular Induced Subgraph is NP-
complete by giving a polynomial-time reduction from Vertex Cover. A
similar but independently obtained result has recently appeared in [3] prov-
ing the NP-hardness of finding an induced r-regular bipartite graph.

THEOREM 1. The r-Regular Induced Subgraph problem is NP-compl.
for any r ≥ 0. It also remains NP-complete when restricted to planar graphs
(for r ≤ 5) or to triangle-free planar graphs (for r ≤ 3).
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Proof. We first prove the theorem in its general statement and then we
explain how to modify the proof for its planar versions. For the proof we use
the dual problem of r-Regular Induced Subgraph, that is, we search
for a vertex subset S of size at most k such that G\S is r-regular. The dual
problem is polynomially equivalent to r-Regular Induced Subgraph.
For r = 0 the dual problem is identical to Vertex Cover, which is known
to be NP-complete. For all remaining r > 0 we give a reduction from the
dual problem with r = 0.

Let (G, k) be an instance of the dual problem with r = 0. We construct
an instance (G′, k′) of the dual problem with r > 0 as follows: First, we
set G′ := G and k′ := k·(r+1). For each vertex v ∈ G we add a copy of Kr+1

to G′. Let Rv be the copy corresponding to vertex v. For all vertices v ∈ G
we identify v with an arbitrary vertex in Rv, i.e., we set v = w for some
arbitrary w ∈ Rv.

We have to show that (G, k) with r = 0 is a yes-instance iff (G′, k′)
with r > 0 is a yes-instance.

(⇒): Suppose that there is a size-k solution S for (G, k), that is, G \ S
consists of isolated vertices. We define a new solution set S′ :=

⋃
v∈S Rv of

size k · (r + 1) for G′. Clearly, G′ \ S′ is a graph in which every connected
component is a Rv, i.e., G′ \ S′ is an r-regular graph, thus S′ is a solution
for (G′, k′).

(⇐): Suppose that there is a size-k′ solution S′ for (G′, k′). We say that S′

is clustered if

∀v ∈ V (G) : Rv ∩ S′ 6= ∅ ⇒ Rv ⊆ S′,

and notice that if S′ is clustered then S = {v ∈ V (G) | Rv ∩ S′ 6= ∅} is a
solution for the instance (G, k) of Vertex Cover. In case the solution S′ is
not clustered, we can turn it into a clustered one according to the following
claim, which completes the proof of correctness of the reduction.

Claim: Given a solution S′ for (G′, k′) where |S′| ≤ k′, we can always
construct a clustered solution S′′ for the same problem instance.

Proof of claim: Omitted.

Vertex Cover remains NP-complete when restricted to triangle free
planar graphs [10]. Therefore, the above proof also implies that r-Regular

Induced Subgraph remains NP-complete even when we restrict it to
planar graphs for r ≤ 5. The only modification is that, for the cases
where r = 4 or r = 5, we attach to G an octahedron or an icosahedron
instead of K5 or K6, respectively. Moreover, the same reduction implies
also the NP-completeness for triangle free planar graphs for r ≤ 3 when, in
the case r = 3, we replace K4 by the cube. �
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Figure 2. Example of a graph with clean regions C1, C2, and C3 (white
vertices, r = 3). The dotted edges denote the connected subgraph each
clean region induces. Dirty vertices are gray or black, boundary vertices
are gray and all other dirty vertices are black. The boundary for C1

is B1 = {b1, b2, b3}, the boundary for C2 is B2 = {b1, b2, b4, b6, b8}, and
the boundary for C3 is B3 = {b5, b7, b9}. Note that boundaries can have
vertices in common, for instance, B1 ∩B2 6= ∅.

It is known that the parameterized version of Independent Set (the
dual problem of Vertex Cover) where the parameter is the size of the
independent set is W [1]-hard. As the reduction in the above proof is a
parametric reduction, we also have the following:

THEOREM 2. k-Size r-regular induced subgraph is W [1]-hard.

4 A Problem Kernel

A central ingredient for presenting the results of this section is the notion
of a clean region. We call a vertex of G clean if it has degree r, and dirty
otherwise. We define a clean region in G as a maximal subset of clean
vertices that induces a connected subgraph in G. Let {Ci : i ∈ I} be the set
of all clean regions. The open neighborhood of each clean region Ci is called
its boundary Bi (notice that two different boundaries may share common
vertices). A clean region Ci is called isolated if Bi = ∅. Observe that
the neighborhood of a non-isolated clean region consists entirely of dirty
vertices. See Figure 2 for examples of clean regions and their boundaries.
The detection of all clean regions in G can be done in O(nr) steps.

The main result of this section is the following.

THEOREM 3. The exact version (demanding a solution of size exactly k)
of the k-Almost r-Regular Graph problem, for r ≥ 1, has a kernel of
size O(kr(k + r)2), which can be constructed in O(n · (k + r)) time.

Proof. The idea of our kernelization is to apply a series of reduction steps
to the input instance that either give a negative answer or produce a new
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equivalent instance satisfying a bigger subset of the following properties.

(1) All vertices in G have degree at least r and at most k + r,
(2) each vertex of a boundary Bi has at most r clean neighbors in Ci,
(3) the isolated clean regions of G contain in total at most (3k2 + k)/2
vertices,
(4) for every clean region Ci with boundary Bi, |Ci| ≤ 1 + (r + 1) · (1 +
max{dk+1

r+1 e, |Bi|}).

Then we will prove that if all the above properties hold for an instance of
k-Almost r-Regular Graph, then the size of the instance is the claimed
one. For our presentation, we will use (Kr, 1) as the no-instance of k-
Almost r-Regular Graph for r ≥ 0. We proceed with the first reduction
step.

Step 1:

1. While k ≥ 0 and ∃v∈V (G) degG(v) < r ∨ degG(v) > k + r:
(G, k)← (G \ {v}, k − 1).

2. If k ≥ 0, then return (G, k), otherwise, return (Kr, 1).

Consider an instance (G, k) of k-Almost r-Regular Graph. Vertices v
in G with deg(v) < r obviously must be contained in the solution S. Like-
wise, graph vertices v with degree deg(v) > k + r must be in S, as we would
have to put more than k of its neighbors into S to achieve degree r for v. We
conclude that Step 1 produces an equivalent instance satisfying property
(1).

For the next step, observe that taking a vertex of a clean region into the
solution S causes its clean neighbors to have a degree less than r in G \ S,
forcing them into the solution as well. By applying the same argument in-
ductively on the clean neighbors we can see that either no vertex of a clean
region is a part of the solution S, or the entire clean region is contained in S.

Step 2:

1. While k ≥ 0 and G contains a clean region Ci whose boundary Bi

contains a vertex v with more than r clean neighbors in Ci:
(G, k)← (G \ Ci, |k| − |Ci|).

2. If k ≥ 0 then return (G, k), otherwise, return (Kr, 1).

To justify Step 2, assume that a solution S of size exactly k exists,
i.e., G \ S is r-regular. Notice that all vertices in NG(S) are dirty. There-
fore, a clean region will be a subgraph of either G[S] or of G \ (S ∪NG(S)).
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Let Ci be a clean region and let v ∈ Bi be a vertex of its boundary with
more than r neighbors in Ci. If Ci is a subgraph of G \ (S ∪NG(S)) then
v can have at most r neighbors in Ci because G \ S is an r-regular graph.
Therefore Ci ⊆ S and thus Step 2 produces an equivalent instance for k-
Almost r-Regular Graph, satisfying properties (1) and (2).

Our observation that either no vertex of a clean region or the entire clean
region is contained in the solution implies that isolated clean regions that
contain more than k vertices cannot be part of the solution. This leads to
the next reduction step.

Step 3:

1. While G contains an isolated clean region Ci where |Ci| ≥ k + 1:
(G, k)← (G \ Ci, k).

2. for i = 1, . . . , k do:
If G contains s isolated clean regions of i vertices, then modify G by
removing max{0, s− dk/ie} of them.

Concerning the second part of this step, observe that if there are more
than k isolated clean regions of equal size i, then we can remove all but dk/ie
of them. Considering all possible sizes (at most k), we can conclude that
there are at most

∑
i=1,...,kd

k
i
e·i ≤

∑
i=1,...,k(k

i
+1)·i = (3k2+k)/2 vertices

in isolated clean regions. Therefore, Step 3 produces an equivalent instance
for k-Almost r-Regular Graph, satisfying properties (1)–(3).

Let Ei be the set of edges connecting vertices in Bi with vertices in Ci.
The idea for the next reduction step is to search for all clean regions Ci of size
greater than (x+ δi) · (r +1)+ δi where x = max{|Bi|, d

k+1
r+1e} and δi = |Ei|

mod 2, and to replace each one by a clean region of size (x+ δi) · (r+1)+ δi

without affecting the neighborhoods of each vertex in the corresponding
boundary Bi (notice that (x + δi) · (r + 1) + δi ≥ x · (r + 1) ≥ k + 1, which
is important as this prevents such a new clean region from being part of
the solution). To do this, we first define an (r + 1)-regular graph Rr,x as
follows: Take a cycle of 2 · (x + δi) edges, remove every second edge {y, z}
and replace it by a graph Gy,z consisting of a (r − 1)-clique whose ver-
tices are all connected with v and u (notice that Gy,z is Kr+1 with an edge
removed). The resulting graph is r-regular. As any single Gy,z contains
a matching of size b r−1

2 c + 1 (see Figure 3), Rr,x contains a matching M
of size (x + δi)(b

r−1
2 c + 1). Observe that Rr,x remains connected if we

remove from it all (or some part) of the edges of M . Finally, Rr,x con-
tains (x + δi) · (r + 1) vertices. The next step applies these observations.
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yx

Figure 3. The graph Gy,z for r = 5 and a matching in it.

Step 4:
Apply the following replacement procedure for each non-isolated clean re-
gion Ci of G with |Ci| > (x + δi) · (r + 1) + δi:

1. From property (2), |Ei| ≤ r · |Bi|. Subdivide in G all the edges in Ei

and then remove all vertices in Ci from G. Notice that the set L of
subdivision vertices survives after this removal and |L| = |Ei|.

2. Add Rr,x to G, i.e., G← G∪Rr,x. Choose, arbitrarily, a subset M ′ ⊆
M of the matching M where |M ′| = |L|/2 + δi(r − 2)/2 (notice that
δi = 1 implies that r is odd). Notice that this is possible as |M | = (x+
δi)·(b

r−1
2 c+1) ≥ (x+δi)·r/2 ≥ (|Bi|+δi)·r/2 ≥ |L|/2+δir/2 ≥ |M ′|

(recall that b r−1
2 c + 1 ≥ r/2 holds when r is an integer). If δi = 0

then remove the edges of M ′ from Rr,x and identify, arbitrarily, their
endpoints with the vertices in L. If δi = 1, then remove the edges
of M ′ from Rr,x, identify, arbitrarily, |L| − 1 of their endpoints with
all vertices in L except one (say w), and then make w adjacent with
the remaining 2|M ′| − (|L| − 1) = |L|+ δi(r − 2) − (|L| − 1) = r − 1
endpoints of the edges in M ′ (this makes w end up with degree r).

Step 4 replaces a clean region Ci of size more than (x + δi) · (r + 1) + δi

by one of size (x + δi) · (r + 1) + δi ≥ k + 1. Moreover, the new clean
region C′

i is connected, has the same boundary Bi as Ci, and all vertices
in Bi have the same number of neighbors in C′

i as they had in Ci. We
will now prove that Step 4 produces an equivalent instance for k-Almost

r-Regular Graph. For this, let S be a size-k vertex set such that G \ S
is r-regular. A solution S for G cannot contain a vertex of any Ci that
changed, as Ci contains more than k vertices. We maintained the vertex
degree of all vertices in Bi, C′

i is also a clean region in G′, and we did not
alter the subgraph G \ Ci = G′ \ C′

i, thus G′ \ S must also be r-regular.
Therefore, S is also a solution for G′. The same argument holds for the
other direction: A solution S′ for G′ cannot contain any vertex of any C′

i,
as C′

i contains more than k vertices, and since G \ Ci = G′ \ C′

i we know
that S′ is also a solution for G. Finally, it is easy to verify that the new
instance satisfies properties (1) – (4).
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The last reduction step is the following:

Step 5:
If G contains more than rk(k + r)(k + 3r + 5) + k + k(k + r) + (3k2 + k)/2
vertices then return (Kr, 1), otherwise return (G, k).

Assume that a solution S of size at most k exists, i.e., G \ S is r-regular.
We define D = NG(S) and F = V (G) \ (S ∪ D) and observe that S, D, F
is a 3-partition of V (G). From property (1) every vertex in G has degree
at most r + k. Therefore, the number of vertices in the neighborhood of S
cannot exceed k(r + k) and thus |D| ≤ k(r + k). We also observe that all
vertices in F are clean, otherwise G \ S would contain a vertex not having
degree r, which contradicts S being a solution. It remains to bound the
size of F . Recall that a clean region Ci is either completely contained in S
or no vertex in Ci is member of S, thus Ci ⊆ F . Therefore, as all vertices
in F are clean, F is a union of clean regions. Suppose that F consists of
a set C = {Ci | 0 ≤ i ≤ q} of q non-isolated clean regions. As there are
no edges in G with endpoints in both S and F (i.e., D separates S and F )
and all vertices in F are clean, we obtain that all boundary vertices of the
clean regions in C must be in D, i.e.,

⋃
i=1,...,q Bi ⊆ D. Also, since G \ S is

r-regular, each vertex of D belongs to at most r sets in B = {B1, . . . , Bq}
and this implies that q ≤ r · |D| and that

∑
i=1,...,q |Bi| ≤ r · |

⋃
i=1,...,q Bi| ≤

r · |D| ≤ rk(k + r). From property (4), |Ci| ≤ (max{dk+1
r+1 e, |Bi|}+ δi) · (r +

1) + δi ≤ max{|Bi| · (r + 1), k + r + 2} + r + 2. Recall that F contains at
most

∑
1,...,q |Ci| vertices from non-isolated clean regions. From property

(3), no more than (3k2 + k)/2 vertices are contained in isolated regions.
Therefore, |F | ≤ (3k2+k)/2+

∑
1,...,q(max{|Bi| ·(r+1), k+r+2}+r+2) ≤

(3k2+k)/2+
∑

1,...,q |Bi| ·(r+1)+k+2r+4 ≤ (3k2+k)/2+
∑

1,...,q |Bi| ·(r+

1)+
∑

1,...,q(k+2r+4) = (3k2+k)/2+rk(k+r)(r+1)+rk(k+r)(k+2r+4) =

(3k2 +k)/2+ rk(k+ r)(k +3r+5). Since |S| ≤ k and |D| ≤ k(k + r) we can
conclude that Step 5 returns an equivalent instance of size O(kr(k + r)2)
and the claimed kernel size is correct. To complete the proof, observe that
the first step requires O((k + r)n) steps and all the rest runs in O(rn)
steps. �

Notice that Theorem 3 holds also for the non-exact version (demanding
a solution of size at most k) of k-Almost r-Regular Graph. The only
modification is that we have to replace the second part of Step 3 by a
deletion of all isolated clean regions.

The above kernelization applies also for r = 1. In this case, every non-
isolated clean region contains a single vertex and Step 4 does not apply at
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all. This permits us to make a better counting of the vertices in F that,
apart from those belonging to isolated clean regions, are at most as many
as the vertices in D. As any isolated clean region contains exactly 2 vertices
when r = 1, the second part of Step 3 should be applied only for i = 2
leaving at most k + 1 vertices in isolated clean regions. Therefore, in the
case r = 1, the kernel has size at most |S|+ 2|D| ≤ k + 2k(k + 1) + k + 1 =
O(k2).

Using a bounded search tree technique, it is possible to prove that solution
for k-Almost r-Regular Graph can be found in O(nr(r + 2)k) time, if
it exists (the proof is easy and omitted). We conclude to the following.

THEOREM 4. For any r ≥ 0, there exists an algorithm for k-Almost

r-Regular Graph with parameter k that runs in O(n(k + r) + kr2(k +
r)2 · (r + 2)k) steps.

5 Conclusion

Notice that our results do not prove that k-Almost r-Regular Graph is
in FPT when r is part of the input problem. We can prove that this version
has the same parameterized complexity as the problem asking whether it is
possible to delete at most k vertices such that the resulting graph is regular
(without knowing its degree in advance). It remains open whether they are
fixed-parameter tractable.

In this paper, we show that the parameterized problem asking whether
we can make a graph r-regular by removing k vertices, with k as parameter,
is fixed-parameter tractable by giving a (polynomial size) problem kernel.
In the construction of the kernel we used the fact that big “clean regions”
can be safely replaced by smaller ones (but not too small). Because r-
regularity is not a hereditary property, we had to take care that such a
replacement locally maintains r-regularity. Similar ideas were employed
in [6] for a distinct, non-hereditary, property. It is an interesting problem
to characterize the properties for which the vertex removal problem is fixed-
parameter tractable. That way, one might extend the general result in [2]
for non-hereditary properties as well.
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