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Abstract

The NP-hard Interval Constrained Coloring (ICC) problem appears in
the interpretation of experimental data in biochemistry dealing with protein
fragments. Given a set of m integer intervals in the range 1 to n and a set of
m associated multisets of colors (specifying for each interval the colors to be
used for its elements), one asks whether there is a “consistent” coloring for all
integer points from {1, . . . , n} that complies with the constraints specified by
the color multisets. We thoroughly analyze a known NP-hardness proof for ICC.
In this way, we identify numerous parameters that naturally occur in ICC and
strongly influence its practical solvability. Accordingly, we present several posi-
tive (fixed-parameter) tractability results exploiting various parameterizations.
We substantiate the usefulness of this “multivariate algorithmics approach” by
presenting experimental results with real-world data.

1. Introduction

Althaus et al. [2, 1] identified Interval Constrained Coloring as an im-
portant combinatorial problem in the context of automated mass spectrometry
and the determination of the 3-dimensional structure of proteins. It builds the
key to replace a manual interpretation of exchange data for peptic fragments
with computer-assisted methods, see Althaus et al. [2] for more on the biochem-
ical background and further motivation. The NP-complete decision problem
Interval Constrained Coloring (ICC) deals with matching color multi-
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sets with integer intervals and can be formalized as follows.3 To this end, for
two positive integers i, j with i ≤ j, let [i, j] := {k ∈ N | i ≤ k ≤ j}. In addition,
for i ≥ 1 let [i] denote the interval [1, i].

Input: A positive integer n, a multiset of m integer intervals F =
{F1, . . . , Fm}, all within [n], and a multiset of m multisets of colors
C = {C1, . . . , Cm} over k different colors.
Question: Is there a coloring c : [n] → [k] such that for each
interval Fi ∈ F it holds that Ci = c(Fi)?

Herein, c(Fi) denotes the multiset of colors assigned by c to the integer points
in the interval Fi. Throughout this paper, we assume that the input intervals
cover [n], since otherwise the input instance can be decomposed into independent
subinstances. Moreover, we say that a coloring c : [n] → [k] satisfies an input
interval Fi if Ci = c(Fi). Finally, a coloring satisfying all input intervals is called
proper.

From a biochemical point of view, the intervals correspond to (typically
overlapping) fragments of a protein with n residues, and the k colors corre-
spond to k different exchange rates that need to be assigned consistently to the
n residues [2, 1]. The color multisets correspond to experimentally found bulk
information that needs to be matched with the residues and can be interpreted
as constraints that describe a set of valid colorings of the interval [n]. Note
that, from an applied point of view, if not all constraints (that is, intervals
that completely match with a given color multiset) can be fulfilled, then it is
also important to investigate the corresponding optimization problems where
one wants to maximize the number of fulfilled constraints [1]. However, we
mainly focus on analyzing the complexity of the decision problem. In the case
of yes-instances, most of our algorithms can be easily adapted to provide a
corresponding coloring.

Known results. The algorithmic study of ICC has been initiated by Althaus et
al. [2, 1]. ICC has been shown to be NP-complete by a reduction from the Ex-
act Cover problem [1]. In a more applied paper [2], besides first introducing
and formalizing the problem, an algorithm based on integer linear program-
ming and branch-and-bound was presented that enumerates all valid (fulfilling
all constraints) color mappings c. In particular, it was shown that in the case of
k = 2 colors a direct combinatorial algorithm leads to polynomial-time solvabil-
ity. The computational complexity of the case k = 3 was left open by Althaus
et al. [2]. Byrka et al. [5] filled this gap by showing the NP-completeness of
ICC for k = 3. The corresponding reduction is from 3-Satisfiability. More-
over, concerning optimization, in a similar way they also showed that the “gap
version” of this restricted case is NP-hard, also implying its APX-hardness.

3Compared with Althaus et al. [2, 1] we choose a somewhat different but equivalent for-
malization here; this problem definition turns out to be more suitable for our subsequent
studies.
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Successful experiments with real-world instances with n < 60, m ≤ 50, k = 3
and randomly generated instances with n ≤ 1000, m = n/2, and k = 3 have
been performed [2]. In a more theoretical paper [1], besides the NP-completeness
proof, the preceding work [2] has been continued by providing results concerning
polynomial-time approximability. In particular, there is an algorithm producing
a coloring where all requirements are matched within an additive error of one if
the LP-relaxation of the presented integer program for ICC has a feasible solu-
tion. This algorithm is based on a sophisticated polyhedral approach combined
with recent randomized rounding techniques. Finally, Canzar et al. [6] provided
a new method (using linear programming and backtracking) for enumerating
all exact and further approximate solutions with polynomial delay between two
successive outputs and using polynomial space. They confirmed the practical
use of their approach by experiments.

Our contributions. This work proposes a fresh view on ICC and the develop-
ment of exact algorithms for NP-hard combinatorial problems in general. The
fundamental starting point here is to deconstruct proofs of NP-hardness in order
to obtain new insights into the combinatorial structure of problems. The point
is to analyze how different parameters occurring in a problem contribute to its
computational complexity. This is where parameterized algorithmics [8, 12, 17]
comes into play. Indeed, as it turns out, ICC gives a prime example for the
continuing evolution of parameterized algorithmics into multivariate algorith-
mics [9, 18]. For ICC, there is a big number of useful parameterizations, all
naturally deduced from deconstructing the known NP-hardness proof. In this
line, for instance, we can show a fixed-parameter tractability result with re-
spect to the parameter “maximum interval length”. Whereas, unless P = NP,
the problem is not fixed-parameter tractable with respect to the color param-
eter k alone [5], it is with respect to the combined parameter (n, k); that is,
there is an algorithm with time complexity (k − 1)n · poly(n, m). These algo-
rithms are of practical interest when the corresponding parameter values are
sufficiently small. For instance, note that all experiments of Althaus et al. [2]
were performed having k = 3 and n ≤ 60 for real-world instances. Indeed, in
the already NP-complete case of k = 3 we can further improve the running time
to 1.89n · poly(n, m). In this spirit, in Section 4 we investigate a number of
“single parameterizations”, and in Section 5 we consider “combined parameter-
izations”. Moreover, whereas ICC is NP-complete for “cutwidth” three [1], we
present a combinatorial polynomial-time algorithm for cutwidth two.4 Tables 1
and 2 in Sections 4 and 5 survey the current state of the art and our new results
concerning (combinatorial) algorithms that can efficiently solve ICC in case of
favorable parameter constellations. Finally, in Section 6, we report positive ex-
perimental results based on implementations of some of our new algorithms. We
conclude with a discussion and some open questions in Section 7.

4The cutwidth denotes the size of a maximum-cardinality set of pairwise overlapping in-
tervals.
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2. Parameterization and the Deconstruction of NP-Hardness

Parameterized algorithmics [8, 12, 17] or, in the context of this work more
appropriately, multivariate algorithmics [9, 18], aims at a fine-grained complex-
ity analysis of problems. The hope lies in accepting the seemingly inevitable
combinatorial explosion for NP-hard problems, but to confine it to some param-
eter p. In this paper, p always is a positive integer or a vector of positive integers.
A given parameterized problem (I, p) is fixed-parameter tractable (FPT) with
respect to the parameter p if it can be solved within running time f(p) ·poly(|I|)
for some computable function f only depending on p.

A standard question of people unfamiliar with parameterized algorithmics is
how to define respectively find “the” parameter for an NP-hard problem. There
are the following (partly overlapping) “standard answers” to this question:

1. The standard parameterization classically refers to the size of the solution
set of the underlying problem (whenever applicable).

2. A parameter describes a structural property of the input; for instance, the
treewidth of a graph or the number of input strings.

3. A parameter may restrict the “dimensionality” of the input; for instance,
in the case of problems from computational geometry.

4. Finding useful parameters to some extent is an “art” based on analyzing
what typical real-world instances look like.

Perhaps the most natural and constructive answer, however, is to look at
the corresponding proof(s) of NP-hardness and what “parameter assumptions”
they (do not) make use of. Indeed, this is what we refer to by deconstructing
NP-hardness proofs for parameter identification. In this work, we deconstruct
Althaus et al.’s [1] NP-hardness proof for ICC and gain a rich scenario of com-
binatorially and practically interesting parameterizations.

Let us now take a closer look at the NP-hardness of ICC. We first have to
briefly review the many-one reduction from Exact Cover due to Althaus et
al. [1]: The input of Exact Cover is a set S of subsets of a ground set U :=
{1, 2, . . . , u} and a positive integer t, and the question is whether there are
t subsets from S such that every element from U is contained in exactly one
such subset. Althaus et al.’s polynomial-time many-one reduction (using an
approach by Chang et al. [7]) from Exact Cover to ICC works as follows.

1. The number of colors k is set to s := |S|.

2. The interval range n is set to u · s.

3. For each element from U , there are three corresponding integer intervals.
Indeed, one can speak of three types of intervals, and all intervals of one
type can be placed consecutively into one interval [n] without overlap.

(a) Type 1: Intervals of the form [(i − 1)s + 1, is] for all 1 ≤ i ≤ u.
(b) Type 2: Intervals of the form [is−t+1, (i+1)s−t] for all 1 ≤ i ≤ u−1.
(c) Type 3: Intervals of the form [is−t−fi+1, is−t+1] for all 1 ≤ i ≤ u,

where fi denotes the number of occurrences of u in the sets of S.
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4. Every type-1 and every type-2 interval is assigned the color set {1, . . . , k}.
A type-3 interval corresponding to i ∈ U is assigned the color set consisting
of the colors associated with the subsets in S that contain i.

We remark that this proof of NP-hardness actually works with just using sets
instead of multisets in the constructed ICC instance. After having described the
construction employed in the NP-hardness proof, the deconstruction begins by
making several observations about its properties:

1. The interval range n and the number m of intervals both are unbounded.

2. The number of colors k is s, hence unbounded, but all color multisets
indeed are sets. That is, no interval shall be assigned the same color
twice.

3. The maximum interval length is s, hence unbounded.

4. The maximum overlap between intervals is max{t, s−t}, hence unbounded.

5. Only three different surrounding intervals [n] are needed for comprising all
intervals without overlap, hence the cutwidth of the constructed instance
is bounded by three.

From the last observation we can conclude that there is no hope for fixed-
parameter tractability with respect to the parameter “cutwidth” unless P=NP.
Referring to the second observation, the same holds true for the parameter k
(number of colors) because Byrka et al. [5] showed NP-hardness even for the
case k = 3. On the positive side, we will show that ICC is polynomial-time solv-
able for cutwidth two. However, from the other three observations we directly
obtain the following questions concerning a parameterized complexity analysis
of ICC.

1. Is ICC fixed-parameter tractable with respect to the parameters n (inter-
val range) or m (number of intervals)?

2. Is ICC fixed-parameter tractable with respect to the parameter “maxi-
mum interval length”?

3. Is ICC fixed-parameter tractable with respect to the parameter “maxi-
mum overlap between intervals”?

The central point underlying the above derived algorithmic questions is that
whenever a quantity (that is, parameter) in an NP-hardness proof is unbounded
(non-constant), then it is natural to investigate what happens if this quantity is
constant or considered to be small compared to the overall input size. Clearly,
one way to answer is to provide a different proof of NP-hardness where this
quantity is bounded. Indeed, this now has happened with respect to the pa-
rameter k in the sense that in the NP-hardness proof due to Althaus et al. [1]
k is unbounded whereas in the new NP-hardness proof due to Byrka et al. [5]
we have k = 3. Otherwise, the main tool in answering such questions is param-
eterized algorithmics. Indeed, the story goes even further by also combining
different parameterizations. More specifically, it is, for instance, natural to ask
whether ICC is fixed-parameter tractable when parameterized by both cutwidth
and the number k of colors (the answer is open), or whether it is fixed-parameter
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tractable when parameterized by both n and k (the answer is “yes”) and what
the combinatorial explosion f(n, k) then looks like. In this way, one ends up
with an extremely diverse and fruitful ground to develop practically relevant
combinatorial algorithms.

In the remainder of this paper, besides the already defined parameters n
(range), m (number of intervals), and k (number of colors), we will consider the
following parameters and combinations thereof:

• maximum interval length l;

• cutwidth cw := max1≤i≤n |{F ∈ F : i ∈ F}|;

• maximum pairwise overlap between intervals o := max1≤i<j≤m |Fi ∩ Fj |;

• maximum number of different colors ∆ in the color multisets.

Note that the NP-hardness result of Byrka et al. [5] for k = 3 also implies the
NP-hardness for ∆ = 3 but ∆ = 2 is yet unclassified. In addition, one of the in-
teger linear programs devised by Althaus et al. [2] has O(m ·k) variables. Using
Lenstra’s famous result [16] on the running time of integer linear programs with
a fixed number of variables then implies that ICC is fixed-parameter tractable
with respect to the (combined) parameter (m, k). However, even after several
improvements (for example by Frank and Tardos [13]), the combinatorial ex-
plosions in Lenstra’s theorem remains huge. This fixed-parameter tractability
result is thus of purely theoretical interest and more efficient combinatorial al-
gorithms are desirable (see [14, 10, 11] for similar classification results using
integer linear programs).

In what follows, we present several fixed-parameter tractability results with
respect to the above parameters (Section 4) and some combinations of them
(Section 5).

3. A Simple Normal Form Observation

Here, we observe that there is a “normal form” that one may assume without
loss of generality for all ICC input instances. More specifically, based on simple
and efficient preprocessing rules, one can perform a data reduction that yields
this normal form.

Proposition 1. (Normal form for ICC)
In O(lmn) time, one can transform every ICC instance into an equivalent one
such that

1. at every position i ∈ [n], there is at most one interval starting at i and at
most one interval ending at i, and

2. if the maximum interval length is l, then every position i ∈ [n] is contained
in at most l intervals.

Proof. To achieve the claimed normal form, exhaustively perform the following
two preprocessing rules.
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1. If there are two intervals Fi = [si, ti] and Fj = [sj , tj] with si = sj , ti = tj ,
and Ci 6= Cj , then return “No”. Otherwise, remove Fi and Ci.

2. If there are two intervals Fi = [si, ti] and Fj = [sj , tj ] with si = sj

and ti < tj , then set Fj := [ti + 1, tj] and Cj := Cj \ Ci.
5 If |Cj | 6= |Fj |,

then return “No”. The case si < sj and ti = tj is handled analogously.

Obviously, the two rules directly imply normal form property 1, which again
immediately implies normal form property 2. For the correctness of the first
rule, observe that no coloring can simultaneously satisfy Fi and Fj . For the
correctness of the second rule note that a proper coloring for the original instance
is a proper coloring of the instance that results by one application of the rule, and
vice versa. Hence, if the new instance obviously is a no-instance (i.e. |Cj | 6= |Fj |),
then it is correct to reject the instance.

Next, we give an analysis of the running time. We use the following strategy.
Keep an array A that holds for every position i ∈ [n] a list with the intervals
starting at i (and another list with the intervals ending at i). This array is
initialized before the application of the rules in O(nm) time. To decide whether
a rule can be applied, iterate over the array to find a position at which two
intervals start (or end). For two intervals Fi and Fj , the necessary changes
can be performed in O(n) time (if one implements the color multisets by an
array of size k ≤ n). Also note that we can update array A within this time
bound. Hence, one application of a rule and the update of array A take O(n)
time. Finally, note that for every interval the first rule can be applied at most
once, and the second rule at most l times. Hence, the rules can be exhaustively
applied in O(nm) + O(lmn) = O(lmn) time. 2

Clearly, Proposition 1, property 1, implies that after preprocessing the “re-
duced equivalent instance” contains at most n intervals and n multicolor sets,
which can be interpreted as “kernelization” with respect to the parameter n in
terms of parameterized algorithmics (also see [4, 15] for surveys on kerneliza-
tion).

4. Single Parameters

In Section 2, we identified various parameters as meaningful “combinatorial
handles” to better assess the computational complexity of ICC. Whereas ICC
is NP-complete for cutwidth cw = 3 [1], we will show that it is polynomial-time
solvable for cw = 2. Obviously, the maximum length l fulfills l ≤ n, so the fixed-
parameter tractability with respect to l (as we will prove subsequently) implies
the fixed-parameter tractability with respect to n. Table 1 surveys known and
new results with respect to single parameters.

5The setminus operation here has to be adapted to multisets, that is, for example, {a, a, b}\
{a, b} = {a}.
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Table 1: Complexity of ICC for one-dimensional parameterizations. Herein, “P” means that
the problem is polynomial-time solvable, “NPc” means that the problem is NP-complete,
and “?” means that the complexity is unknown. For fixed-parameter algorithms, we only give
the function of the exponential term, omitting polynomial factors. The results for k = 2 and
cw = 3 are due to Althaus et al. [1, 2], the results for k ≥ 3 and ∆ ≥ 3 are due to Byrka et
al. [5], the rest is new.

Parameter k ∆ l cw m n o

Complexity
k = 2: P
k ≥ 3: NPc

∆ = 2: ?
∆ ≥ 3: NPc

l!
cw = 2: P
cw = 3: NPc

? n!
o = 1: P
o ≥ 2: ?

Parameter Maximum Interval Length l. Our first algorithm exploits the pa-
rameter “maximum interval length l”. The rough idea is that the coloring at
position i does not affect any intervals that overlap with position i+l. This leads
to a dynamic programming algorithm that keeps track of all possible colorings
of the “last” interval (which has at most l positions).

Theorem 1. ICC can be solved in O(l! · l log l · mn) time.

Proof. We present a dynamic programming algorithm. To this end, we use
the following notation. Let K = {1, . . . , k} denote the set of all colors. For an
interval [s, t], a coloring c is represented by a tuple (c1, . . . , ct−s+1) ∈ Kt−s+1,
meaning that c(s) = c1, c(s + 1) = c2, and so on. We say that a coloring c′

satisfies an input interval Fi ∈ F if c′(Fi) = Ci. For an input interval Fi ∈ F ,
the set Ki of all satisfying colorings is given by

Ki := {c′ ∈ K|Fi| | c′ satisfies Fi}.

Note that there are at most |Ci|! satisfying colorings of an input interval Fi (the
worst case arises when every color occurs at most once in the multiset Ci since
then every permutation of the colors in Ci represents a satisfying coloring).
Finally, let A denote the set of intervals completely contained in some other
intervals, that is,

A := {F ∈ F | ∃F ′∈F : F ⊆ F ′},

and B := F \A. We assume that the intervals in B are ordered in increasing or-
der of their start points (and, hence, also in increasing order of their endpoints).
Let B = {B1, . . . , Bm′} and Bj = [sj , tj ] for all 1 ≤ j ≤ m′. Note that m′ ≤ n

and that the intervals in B cover [n], that is,
⋃m′

j=1 Bj = [n] (as discussed in
Section 1 we assume that the input intervals cover [n]).

Now, we are ready to describe the algorithm. The algorithm traverses
the Bj ’s in increasing order of j, 1 ≤ j ≤ m′. For every Bj , the algorithm main-
tains a table Tj with an entry for every satisfying coloring c of Bj . Informally
speaking, this entry indicates whether there exists a coloring of the interval [1, tj]
that agrees with c in [sj , tj ] and satisfies all intervals seen so far. More specif-
ically, the goal of the dynamic programming procedure is to fill these tables to
match the following definition. For every coloring c′ = (c′1, . . . , c

′
|Bj|

) ∈ Kj, we
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have Tj(c
′) = true if and only if there exists a coloring c′′ = (c′′1 , . . . , c′′tj

) ∈ Ktj of
the interval [tj ] with (c′′sj

, . . . , c′′tj
) = c′ such that c′′ satisfies each interval F ∈ F

with F ⊆ [tj ]. Obviously, if the algorithm correctly computes the tables accord-
ing to this definition, then Tm′ contains a true entry if and only if the input is
a yes-instance.

Table T1 is computed as follows. For every c′ ∈ K1, set T1(c
′) := true if and

only if c′ satisfies every interval [s, t] ∈ A with [s, t] ⊆ [s1, t1].
For j ≥ 2, table Tj is computed based on Tj−1, as described next. We

say that a coloring c′ = (c′1, . . . , c
′
|Bj |

) ∈ Kj for Bj is consistent with a color-

ing c′′ = (c′′1 , . . . , c′′|Bj−1|
) ∈ Kj−1 for Bj−1 if c′ and c′′ agree in Bj−1∩Bj , that is,

(c′′sj−sj−1+1, . . . , c
′′
|Bj−1|

) = (c′1, . . . , ctj−1−sj+1). We write c′|c′′ to denote that c′

is consistent with c′′. To compute the entries of Tj, proceed as follows. For j
from 2 to m′ and for every c′ = (c′1, . . . , c

′
|Bj |

) ∈ Kj, set

Tj(c
′) = true ⇐⇒ c′ satisfies all F ∈ A with F ⊆ Bj and

∃c′′ ∈ Kj−1, c′|c′′ : Tj−1(c
′′) = true.

(1)

Finally, the algorithm returns “Yes” if T ′
m contains a true entry and “No”,

otherwise.
For the correctness of the algorithm, we show by induction that for ev-

ery j, 1 ≤ j ≤ m′, table Tj meets above definition, that is, table entry Tj(c
′)

is true if and only there exists a coloring of [tj ] with “suffix” c′ satisfying all
intervals F ∈ F with F ⊆ [tj ]. Clearly, T1 is computed in accordance with this
definition, yielding the induction base.

For the induction step, we show that Recursion (1) computes Tj according to
the above definition assuming that Tj−1 has been correctly computed (induction
hypothesis). That is, we show that there is a coloring of [tj ] with suffix c′

satisfying all intervals F ∈ F with F ⊆ [tj ] if and only if c′ satisfies all F ∈ A
with F ⊆ Bj and there is a c′′ ∈ Kj−1 with c′|c′′ such that Tj−1(c

′′) = true. The
“⇒”-direction is obvious. For the “⇐”-direction, observe the following. The
algorithm combines a coloring of [tj−1] satisfying all F ∈ F with F ⊆ [tj−1]
with a coloring c′ of [sj , tj ] that is consistent with c′′ and satisfies all F ∈ F
with F ⊆ [sj , tj ]. This yields a coloring for [tj ] that satisfying all F ∈ F
with F ⊆ [tj ]; all F ∈ F with F ⊆ [tj−1] are clearly also satisfied by this
coloring. Moreover, all other F ∈ F with F ⊆ [tj ] are satisfied since for every
input interval [s, t] ∈ F with tj−1 < t ≤ tj it holds that [s, t] ⊆ [sj , tj ].

As to the running time, there are at most |Bj |! satisfying colorings of Bj ;
at most one for every permutation of the associated color multiset. Hence, one
has to consider at most l! colorings for every Bj . For every j = 1, . . . , m′ − 1,
the algorithm proceeds as follows.

When building table Tj, the algorithm computes an auxiliary table Qj con-
taining one entry for all c′ ∈ Kj with the same length-(tj −sj+1 +1) suffix, indi-
cating whether Tj contains a true entry for one of these colorings. Table Qj can
for example be realized by a dictionary for which the addition and the lookup of
a key requires O(log(s)) comparisons, where s is the size of the dictionary. Then,
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to check whether ∃c′′ ∈ Kj−1, c′|c′′ : Tj−1(c
′′) = true for a c′ = (c′1, . . . , c

′
|Bj|

) ∈

Kj, the algorithm can check whether Qj−1(c
′
1, . . . , c

′
tj−sj−1+1) = true in O(l log l)

time (note that the size of Qj does not exceed l!). Hence, for every posi-
tion 1 ≤ j ≤ m′, it needs at most O(l! · (l log l + lm)) time, where the factor lm
is due to checking whether c′ satisfies all F ∈ F with F ⊆ [sj , tj ]. In summary,
since m′ ≤ n the total running time is O(l! · l log lmn). 2

Parameter Cutwidth cw. Here, we show that ICC is solvable in O(n2) time for
cutwidth cw = 2. This contrasts the case cw = 3 shown to be NP-complete [1].
Our algorithm is based on four data reduction rules that are executable in
polynomial time. The application of these rules either leads to a much simplified
instance that can be colored without violating any interval constraints or shows
that the instance is a no-instance.

In the following, we say that a reduction rule is correct if the instance after
applying this rule has a proper coloring if and only if the original instance has
a proper coloring. Some of the subsequent data reduction rules are based on
identifying positions for which we can decide which color they will have in a
proper coloring. In this context, we use the following notation. If we can decide
that a position i is colored by color cx in a proper coloring, we write c(i) = cx,
meaning that we simplify the instance as follows; for all Fj = [s, t] with s ≤ i ≤ t,
we set Cj := Cj\{cx} and t := t−1. For all Fj = [s, t] with i < s, we set s := s−1
and t := t − 1. “Empty” intervals Fj with Cj = ∅ are removed from the input.
Finally, we call an instance reduced with respect to one or more data reduction
rules if none of these rules applies.

We start with a basically straightforward data reduction rule.

Reduction Rule 1. For any two intervals Fi and Fj and their corresponding
color multisets Ci and Cj ,

• if |Fi ∩ Fj | = |Ci ∩ Cj |, then set c(Fi ∩ Fj) = Ci ∩ Cj ;

• if |Fi ∩ Fj | > |Ci ∩ Cj |, then return “No”.

Rule 1 is obviously correct: if two intervals “share” more positions than color
elements, then there is no coloring that satisfies both intervals, and if the number
of shared positions is equal to the number of shared color elements, then one
has to color the overlapping intervals exactly with the corresponding colors.
Moreover, since the cutwidth is two there is no further interval containing a
position in Fi ∩ Fj . Hence, we can color the positions of Fi ∩ Fj in arbitrary
order with the colors in Ci ∩ Cj .

After exhaustive application of Rule 1 we can assume that no interval is
completely contained in any other interval.

In the following, assume that the intervals are ordered with respect to their
startpoints, that is, for Fi = [si, ti] and Fj = [sj , tj] with i < j we have si < sj .
Consider a position i, 1 ≤ i < n. If there is no input interval [sj , tj ] with sj ≤
i and tj > i, then we can color [i] independently from [i + 1, n]. Together
with Rule 1 and the fact that cw = 2, we can thus assume that all intervals

10
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except for F1 and Fm overlap with exactly two other intervals. Hence, we can
partition each interval Fj , 1 < j < m, into at most three subintervals: the
first subinterval overlaps with Fj−1, the second (possibly empty) subinterval
does not overlap with any other interval, and the third subinterval overlaps
with Fj+1. The following notation describes this structural property. For an
interval Fj , 1 < j < m, define

F 1
j := Fj ∩ Fj−1, F 3

j := Fj ∩ Fj+1, and F 2
j := Fj \ (F 1

j ∪ F 3
j ).

For a coloring c′ of [n] and j, 1 < j < m, let C1
j := c′(F 1

j ). Define C2
j and C3

j

accordingly. For F1, define F 3
1 := F 1

2 and F 2
1 := F1 \ F 3

1 ; for Fm, define F 1
m :=

Fm ∩ Fm−1 and F 2
m := Fm \ F 1

m; C3
1 , C2

1 , C1
m, and C2

m are defined analogously.
Whether a coloring violates an interval Fj only depends on the sets C1

j , C2
j ,

and C3
j . Hence, when we know that a color cx must belong to some Cl

j , 1 ≤ l ≤ 3,

then we can color an arbitrary i ∈ F l
j with cx. Finally, for a color multiset C

and a color cx let occ(cx, C) denote the multiplicity of cx in C.
The next rule reduces intervals Fj that have no “private” middle interval F 2

j

but more elements of some color cx than the previous interval.

Reduction Rule 2. For any interval Fj , if F 2
j = ∅ and there is a color cx such

that occ(cx, Cj−1) < occ(cx, Cj), then for some arbitrary i ∈ F 3
j set c(i) = cx.

The rule is correct because in a proper coloring at most occ(cx, Cj−1) many po-
sitions in F 1

j (which is the intersection of Fj and Fj−1) can be colored with cx.
Hence, in order to satisfy constraint Cj , all other occurrences of cx must be
at positions in F 3

j . Again, since the cutwidth is two, we can choose an ar-

bitrary position of F 3
j . After the exhaustive application of Rule 2, for every

interval Fj with F 2
j = ∅, we have Cj−1 ⊇ Cj . Next, we reduce triples of inter-

vals Fj−1, Fj , Fj+1 that have identical color multisets in case F 2
j = ∅.

Reduction Rule 3. For intervals Fj−1, Fj, and Fj+1 such that Cj−1 = Cj =
Cj+1 and F 2

j = ∅, remove Fj−1 and Fj from the input and for all inter-
vals Fj+l =: [s, t] with l ≥ 1 set Fj+l = [s′, t′], where s′ := s − |Fj | and t′ :=
t − |Fj |.

Lemma 1. Rule 3 is correct.

Proof. Let I be an instance to which Rule 3 is applied, and let I ′ be the
resulting instance. We show that I is a yes-instance if and only if I ′ is a yes-
instance. Let I be a yes-instance, let c′ be a proper coloring of I, and for each
input interval Fl ∈ F let C1

l , C2
l , C3

l be the color multisets according to c′.
Since Cj−1 = Cj = Cj+1, we have C1

j−1 ⊆ C1
j+1 and C3

j+1 ⊆ C3
j−1. In I ′, Fj+1

overlaps with Fj−2 and Fj+2. Coloring F 1
j+1 with the colors of C1

j−1 and F 2
j+1

with the colors of Cj \ (C1
j−1∪C3

j+1) yields a proper coloring for I ′ since Cj+1 is
not violated and for the other intervals the coloring has not changed. Hence, if I
is a yes-instance, then I ′ is a yes-instance. The other direction can be shown
analogously. 2

11
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The following is our final data reduction rule.

Reduction Rule 4. Let I be an instance that is reduced with respect to Rules 1, 2,
and 3, and let Fj be the first interval of I such that there is a color cx with
occ(cx, Cj) > occ(cx, Cj+1). Then,

• if j = 1, then set c(i) = cx for some arbitrary i ∈ F 2
1 ;

• if j > 1 and cx /∈ Cj−1, then set c(i) = cx for some arbitrary i ∈ F 2
j in

case F 2
j 6= ∅ and otherwise return “No”;

• if j > 1 and cx ∈ Cj−1, then set c(i) = cx for some arbitrary i ∈ F 1
j .

Lemma 2. Rule 4 is correct.

Proof. Let I be an instance that is reduced with respect to Rules 1, 2, and 3
to which Rule 4 is applied, and let I ′ be the resulting instance. We show that I
is a yes-instance if and only if I ′ is a yes-instance. We only show that if I is a
yes-instance, then I ′ is a yes-instance, since the other direction trivially holds.

If j = 1, this is easy to see: since cx occurs more often in F1 than in F2, one
of the positions in F1 \ F2 must be colored with cx.

If j > 1 and cx /∈ Cj−1, then it is clear that one of the positions in F 2
j must

be colored with cx. We either perform this forced coloring or return “No” if this
is not possible.

Finally, if j > 1 and cx ∈ Cj−1, the situation is more complicated. Let c′ be
a proper coloring of I. If there is a position i ∈ F 1

j such that c′(i) = cx, then
the claim obviously holds. Otherwise, we show that we can transform c′ into an
alternative coloring c′′ that is proper and there is an i ∈ F 1

j such that c′′(i) = cx.

Whether coloring c′′ is proper can be determined from the multisets C1
l , C2

l ,
and C3

l , 1 ≤ l ≤ m, defined by the coloring function c′′. Hence, we describe the
transformation applied to c′ with respect to these multisets. Note that we do
not modify the sets Cy

l , y ∈ {1, 2, 3}, for any l > j.
We face the following situation: cx /∈ C1

j , but since c′ is a coloring that does

not violate any interval constraints and by the precondition of Rule 4, cx ∈ C2
j .

By the choice of j in Rule 4, we have C1 ⊆ C2 ⊆ . . . ⊆ Cj . We show that we can
always find a series of “exchange operations” such that the resulting coloring is
proper and cx ∈ C1

j . We perform a case distinction.

Case 1: F 2
j−1 6= ∅. There are three subcases of this case.

Case 1.1: cx ∈ C2
j−1. In this case, we exchange cx with some arbitrary cl ∈ C1

j .

Furthermore, we remove cx from C2
j and add cl to C2

j . The exchange is shown

in Fig. 1a; the resulting coloring is clearly proper and cx ∈ C1
j .

Case 1.2: cx ∈ C1
j−1 and F 2

j−2 6= ∅. Clearly, Cj−2 must be involved in the

exchange. We choose an arbitrary element cl ∈ C2
j−2. Since Cj−2 ⊆ Cj−1, we

also have cl ∈ Cj−1 \ C1
j−1. We distinguish two further subcases.

Case 1.2.1: cl ∈ C3
j−1. We perform a direct exchange of cl and cx between C2

j−2

and C1
j−1 and also between C1

j and C2
j . The exchange is shown in Fig. 1b; the

12



Journal of Discrete Algorithms, CPM 2009 Special Issue

Fj

Fj

Fj

Fj−1

Fj−1

Fj−1

Fj−2

Fj−2

Fj−2

cx cx

cxcx

cx

cx cx

cf

cf

cl

cl

clcl

clcl

a)

b)

c)

Figure 1: Exchange operations used in the proof of Lemma 2. Intervals are shown as lines.
The segments of an interval Fj where no other interval starts or ends correspond to the color
multisets C1

j , C3

j , and (if present) C2

j . A vertical double arrow means removing the element
shown at the bottom from the corresponding multiset and adding the element shown at the
top of the arrow to the multiset; a double arrow between two multisets means exchanging the
elements between the corresponding multisets; a simple arrow means moving an element from
one multiset to another in the indicated direction.

resulting coloring is clearly proper and cx ∈ C1
j .

Case 1.2.2: cl ∈ C2
j−1. We remove cl from C2

j−2 and add cx to C2
j−2. Fur-

thermore, we perform a circular exchange between C1
j−1, C2

j−1, and C3
j−1:

move cx from C1
j−1 to C3

j−1, move an arbitrary element cf from C3
j−1 to C2

j−1,

and move cl from C2
j−1 to C1

j−1. Finally, we remove cx from C2
j and add cf

to C2
j . The exchange is shown in Fig. 1c; the resulting coloring is clearly proper

and cx ∈ C1
j .

Case 1.3: cx ∈ C1
j−1 and F 2

j−2 = ∅. As stated above, we have Cj−3 ⊆ Cj−2.

Furthermore, since F 2
j−2 = ∅ and Rule 2 does not apply, we have Cj−3 = Cj−2.

Hence, F 2
j−3 6= ∅ since otherwise Fj−3 would have been removed by Rule 3.

Case 1.3.1: cx ∈ C2
j−3. We pick an arbitrary element cl ∈ C3

j−3 and exchange

it with cx ∈ C2
j−3. If cl ∈ C3

j−1, then we perform a direct exchange of cx

and cl between C1
j−1 and C3

j−1. If cl ∈ C2
j−1, we perform a circular exchange

between C1
j−1, C2

j−1, and C3
j−1 using some arbitrary cf ∈ C3

j−1. Furthermore,

we remove cx from C2
j and insert cl into C2

j . Fig. 2a shows the more complicated

case where cl ∈ C2
j−1.

Case 1.3.2: cx ∈ C1
j−3. Clearly, any change must also involve Fj−4. Further-

more, we can have a long “chain” of alternating intervals Fj−2i and Fj−2i−1, 1 ≤
i < j/2, such that F 2

j−2i = ∅ and F 2
j−2i−1 6= ∅. Since the instance is reduced

13
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Fh

Fh

Fj

Fj

Fj

Fg

Fj−1

Fj−1

Fj−1

Fj−2

cx

cx cxcx

cx

cx

cxcx cx cx

cxcx

cf

cf

cf

cf

cf

cf

cl cl

cl

clcl

clclcl

cl

a)

b)

c)

Figure 2: Exchange operations used in Case 1.3 of the proof of Lemma 2. Intervals are shown
as lines. Two intervals [s, t] and [s′, t′] are drawn adjacent if t = s′ − 1 or vice versa. The
segments of an interval Fj where no other interval starts or ends correspond to the color
multisets C1

j , C3

j , and (if present) C2

j . A vertical double arrow means removing the element
shown at the bottom from the corresponding multiset and adding the element shown at the
top of the arrow to the multiset; a double arrow between two multisets means exchanging the
elements between the corresponding multisets; a simple arrow means moving an element from
one multiset to another in the indicated direction.

with respect to Rules 2 and 3 we have Cj−2i−1 = Cj−2i ⊆ Cj−2i+1. Let Fh be
the first (with lowest index) interval of the chain, that is, F 2

h 6= ∅, F 2
h+1 = ∅,

and either Fh = F1 or F 2
h−1 6= ∅. There is either some rightmost (with high-

est index) interval Fg such that cx ∈ C2
g , or for all intervals Fi of the chain we

have cx /∈ C2
i . We show that in the first case, for all intervals Fg+2i, g+2i ≤ j−3,

we have cx ∈ C1
g+2i, and in the second case for all Fh+2i, h + 2i ≤ j − 3,

we have cx ∈ C1
h+2i. This can be seen as follows. We have cx ∈ C1

j−3 and

thus cx ∈ Cj−5 \ C1
j−4, since Cj−4 = Cj−5. We either have cx ∈ C2

j−5 (imply-

ing Fg = Fj−5) or cx ∈ C1
j−5 (in which case we can apply the same arguments

showing that either Fg = Fj−7 or cx ∈ C1
j−7 and so on). We now sketch the

exchange operations that we perform.
First, consider the case that there is some Fg with cx ∈ C2

g . We perform an
exchange similar to the one shown in Fig. 2a. That is, we exchange cx ∈ C2

g

and some cl ∈ C3
g . Then we remove cx from C1

g+2, and add it to C3
g+2. We also

need to add cl to C1
g+2, which is possible since cl ∈ Cg+2 \ C1

g+2. Depending
on whether cl ∈ C2

g+2 or cl ∈ C3
g+2, we perform a circular or a direct exchange.

These exchange operations are carried on (for Fg+2i for increasing i ≥ 1) until
we have reached Fj , that is, we move cx from C1

g+2i to C3
g+2i and some cy

14
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(depending on the previous exchange) from Cg+2i \C1
g+2i to C1

g+2i. An example
of this exchange is shown in Fig. 2b. Note that this also includes the case
where Fh = F1.

Second, we consider the case where for all intervals Fi of the chain we
have cx /∈ C2

i . We start the exchange operation at the first (with lowest in-
dex) interval Fh of the chain, that is, the first interval Fh of the chain such
that F 2

h 6= ∅ and F 2
h−1 6= ∅. Note that, since we have already considered the

case F1 = Fh, such an interval must exist. Then we perform the exchange
operations as sketched in Fig. 2c. That is, we remove an arbitrary element cl

from C2
h−1 and add cx to C2

h−1. Then we perform either a circular or a direct
exchange of cl and cx in Fh, which is possible since cl ∈ Ch \ C1

h. We continue
with these circular or direct exchanges for Fh+2i for increasing i ≥ 1 until we
have reached Fj−1. Finally, we remove cx from Cj−2 and add cf to Cj−2.

Case 2: F 2
j−1 = ∅. As shown in Case 1.3, we can assume that F 2

j−2 6= ∅ since

otherwise Rule 3 would apply. Hence, there is some cl ∈ C2
j−2. Since Cj−2 =

Cj−1 and C2
j−1 = ∅, we also have cl ∈ C3

j−1. Hence, this case is similar to
Case 1.2.1 and we can perform an exchange as shown in Fig. 1b.

In all cases, we construct an alternative coloring c′′ that is proper and there
is an i ∈ F 1

j , such that c′′(i) = cx. This means that we can assume that if I is

a yes-instance, then there is some i ∈ F 1
j such that c′(i) = cx. In summary, this

shows that I is a yes-instance if and only if I ′ is a yes-instance. 2

With these four reduction rules at hand, we can describe a simple quadratic-
time algorithm (for constant number k of colors) for ICC with cutwidth two.

Theorem 2. ICC can be solved in O(kn2) time when the input has cutwidth two.

Proof. The algorithm starts with exhaustively applying Rules 1 to 4. Note
that before applying Rule 4 we always have to check whether Rule 1, Rule 2
, or Rule 3 can be applied, because it is only correct to apply Rule 4 when
the instance is reduced with respect to the other rules. The rules either re-
turn “No” or we obtain an instance that is reduced with respect to all re-
duction rules. In such an instance we have C1 ⊆ C2 ⊆ . . . ⊆ Cm. Other-
wise, Rule 4 would apply, because there would be some Fi ∈ F and a color cx

such that occ(cx, Ci) > occ(cx, Ci+1). This instance can be easily colored as
follows. For the first interval F1, we choose an arbitrary coloring that does not
violate C1. Since C1 ⊆ C2, this coloring also does not violate C2. Then we re-
move the colored parts from the input, adjust the color multisets and intervals
accordingly, and choose an arbitrary coloring that does not violate C2. Clearly,
this does not violate C3, since C2 ⊆ C3. After this, we again reduce the colored
parts and continue with coloring F3. This is repeated until all positions are
colored and produces a coloring that does not violate any interval constraints.
This proves the correctness of the algorithm.

For the running time of the algorithm consider the following. First, since
the input has cutwidth two, the number m of intervals is O(n). For each reduc-
tion rule, checking whether it can be applied and the application itself can be
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Table 2: Complexity of ICC for combined parameters. We only give the function of the
exponential term, omitting polynomial factors. Herein, (k, ∗) and (k, ∗, ∗) refer to combined
parameters that feature k and one or two additional parameters, (l, ∗) refers to combined
parameters that feature l and one additional parameter. The result for parameter (k, m) is
due to Althaus et al. [2], the rest is new.

Parameter Running times

(k, ∗) kl, (k − 1)n, f(k, m) (ILP)

(k, ∗, ∗) lcw·(k−1), ncw·(k−1)

(l, ∗) ∆l, (cw + 1)l

performed in O(kn) time. Furthermore, the application of any of the reduction
rules removes at least one position from the interval [n]. Overall, the rules can
thus be applied at most n times. Together with the O(n) steps that are clearly
sufficient for coloring any instance that is reduced with respect to the reduction
rules, this leads to a total running time of O(kn2). 2

Using the previous algorithm, we also obtain polynomial-time solvability in
case the maximum overlap o between intervals is at most one. This follows
from the observation that after achieving the normal form of the instance (see
Proposition 1), each instance with overlap at most one also has cutwidth at most
two, which can be seen as follows. Suppose an instance that has the normal form
has overlap one and cutwidth at least three. Then there must be a position i
such that at least three intervals F , F ′, and F ′′ overlap at i. By Proposition 1,
at most one of these three intervals, say F , starts at i. This, however, means
that F ′ and F ′′ have overlap at least two.

Corollary 1. ICC can be solved in O(n2) time when the input has overlap one.

5. Combined Parameters

In the following, as already indicated in Section 2, we turn to the study of
some relevant pairs of single parameters which form a “combined parameter”.
Table 2 summarizes our current knowledge about combined parameterizations
of ICC—there are many questions left open.

First, we present a dynamic programming strategy for solving ICC in O(kl ·
(k+ l)mn) time. This algorithm uses similar ideas as the algorithm presented in
the proof Theorem 1. Note that, for a small number k of colors this algorithm
is more efficient than the algorithm presented in the proof of Theorem 1.

Theorem 3. ICC can be solved in O(kl · (k + l)mn) time.

Proof. We present a dynamic programming algorithm. The basic idea of the
algorithm is to maintain for every length-l subinterval of [n] a table with an entry
for every possible coloring of that interval indicating whether this coloring can
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be extended to a proper coloring of [n]. These tables are built by a “left to
right” dynamic programming procedure. The details follow.

For every 1 ≤ i ≤ n − l + 1, the algorithm maintains a table Ti with an
entry for every possible coloring of the interval Ii := [i, i + l − 1]. Note that
there are kl possibilities to color a size-l interval with k colors. In the following,
let K := {1, 2, . . . , k} be the set of all colors. A coloring of a length-l interval
[i, i+ l−1] is represented by a vector c′ = (c′1, . . . , c

′
l) ∈ Kl, meaning that c′(i) =

c′1, c′(i + 1) = c′2, and so on. Recall that a coloring c′ satisfies (the constraint
of) an input interval Fj ∈ F if Cj = c′(Fj). Finally, for 1 ≤ i ≤ n we say that
a coloring of [i] is proper, if it satisfies all input intervals contained in [i].

The goal of the dynamic programming procedure is to fill the tables Ti in
accordance with the following definition. For every 1 ≤ i ≤ n−l+1 and for every
coloring c′ ∈ Kl, we have Ti(c

′) = true if and only if there exists a coloring c′′ =
(c′′1 , . . . , c′′i+l−1) ∈ Ki+l−1 of the interval [i + l − 1] with (c′′i , . . . , c′′i+l−1) = c′

satisfying each interval F ∈ F with F ⊆ [i + l − 1]. That is, Ti(c
′) = true if

and only if there exists a proper coloring c′′ of the interval [i + l − 1] that is an
extension of c′.

For i = 1 and for every c′ ∈ Kl, this is achieved by setting T1(c
′) := true if

and only if c′ satisfies every interval F ∈ F with F ⊆ [l].
For i > 1, table Ti is computed based on Ti−1 as follows. For i = 2 to

n − l + 1 and for every c′ = (c′1, . . . , c
′
l) ∈ Kl, set

Ti(c
′) = true ⇐⇒ c′ satisfies every [s, t] ∈ F with [s, t] ⊆ [i, i + l − 1] and

∃z ∈ K : Ti−1((z, c′1, c
′
2, . . . , c

′
l−1)) = true.

(2)

Finally, the algorithm outputs “Yes” if there exists a coloring c′ ∈ Kl with
Tn−l+1(c

′) = true, and “No”, otherwise. This completes the description of the
algorithm.

The correctness of the algorithm follows by induction on i. More specifically,
we show that Ti meets the above definition for every 1 ≤ i ≤ n − l + 1. That
is, we show that Ti(c

′) = true if and only if there is a proper coloring of the
interval [i + l − 1] with “suffix” c′. Obviously, this holds for i = 1.

For the induction step we show the correctness of Recursion (2). That is, we
show that there is a proper coloring of [i + l− 1] with suffix c′ (that is, Ti(c

′) =
true) if and only if c′ satisfies all input intervals contained in [i, i+l−1] and there
is a proper coloring of [i + l − 2] with suffix (z, c′1, c

′
2, . . . , c

′
l−1) for some z ∈ K

(that is, Ti−1((z, c′1, c
′
2, . . . , c

′
l−1)) = true).

The “⇒”-direction is straightforward. For the “⇐”-direction, note the fol-
lowing. The existence of a z ∈ K with Ti−1((z, c′1, c

′
2, . . . , c

′
l−1)) = true means

that there is a coloring c′′ = (c′′1 , . . . , c′′i−2, z, c′1, . . . , c
′
l−1) of [i + l − 2] satisfying

all F ∈ F , F ⊆ [i+l−2]. Thus, the coloring c∗ = (c′′1 , . . . , c′′i−2, z, c′1, . . . , c
′
l−1, c

′
l)

clearly satisfies all input intervals [s, t] ∈ F with t ≤ i + l− 2. Moreover, c∗ sat-
isfies all input intervals [s, t] ∈ F with t = i + l − 1 since every input interval
that ends at position i + l − 1 must be completely contained in [i, i + l − 1].

As to the running time, for every i ∈ [n] and for every c′ ∈ Kl the com-
putation of Ti(c

′) according to Recursion (2) can be performed in O(m(k + l))
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time. This can be seen as follows. For every input interval completely contained
in [i, i + l − 1], check whether it is satisfied by c′, which is doable in O(k + l)
time (if we realize the multisets by size-k arrays). In addition, to check whether
∃z ∈ K : Ti−1((z, c1, c2, . . . , cl−1)) = true, try all k colors for z; hence, the run-
ning time for the above recursion is O(m(k + l)). This leads to a total running
time of O(kl · (k + l)mn) since for every position 1 ≤ i ≤ n − l + 1 we have to
try all kl possible colorings of a length-l interval. 2

Next, we present an alternative solution strategy also based on dynamic
programming. The running time of this algorithm can be bounded by (cw+1)l ·
poly(n, m) or lcw·(k−1) · poly(n, m). To explain the basic idea of the algorithm,
consider the following. Assume that we are given a coloring c′ satisfying all
intervals. Consider a position i. With respect to i coloring c′ partitions a
color multiset C of an interval F intersecting with i into two multisets: one
containing the colors that c′ uses for the positions j ∈ F with j ≤ i and the
other containing all other colors of the color multiset. The basic idea of the
dynamic programming algorithm is to traverse the instance from “left to right”
and to try for every position i all partitions of the color multisets of the intervals
intersecting with i. Roughly speaking, for every such partition, the algorithm
remembers whether this partition is consistent with a coloring satisfying all
input interval seen so far. In the proof of the next theorem, we will show that,
for a position i and a partition of the color multisets intersecting with i, this
decision can be made based on the stored information for position i − 1.

Theorem 4. ICC can be solved in O((cw+1)l · l · (k · cw)2 · log cw ·n) time and
O(lcw·(k−1) · (k · cw)3 log l · n) time, respectively.

Proof. We present a dynamic programming algorithm that yields both claimed
running times. We use the following notation. For every position i, 1 ≤ i ≤ n,
let Fi = {Fi1 , . . . , Fini

} denote the input intervals containing i. Furthermore,
let Ci = {Ci1 , . . . , Cini

} denote the color multisets associated with the intervals
in Fi, where Cij

is the color multiset associated with Fij
, 1 ≤ j ≤ ni. Note

that ni ≤ cw. Let Fij
= [sij

, tij
] for all 1 ≤ j ≤ ni. By K = {1, . . . , k} we refer

to the set of all colors. In addition, a tuple (M1, . . . , Mq) of multisets is called
a chain if there exists a permutation π of {1, . . . , q} such that Mπ(1) ⊆ Mπ(2) ⊆
. . . ⊆ Mπ(q). Finally, for 1 ≤ i ≤ n we say that a coloring of [i] is proper if it
satisfies all input intervals contained in [i].

For every position i, the algorithm maintains a table Ti with an entry for
every possible tuple of color multisets (A1, . . . , Ani

) with Aj ⊆ Cij
and |Aj | =

i − sij
+ 1 for all 1 ≤ j ≤ ni. Informally speaking, this entry indicates whether

there exists a coloring of the interval [i] that uses for every j, 1 ≤ j ≤ ni,
the colors in Aj for the subinterval [sij

, i] and satisfies all intervals that end
before position i. More specifically, the goal of the dynamic programming
procedure is to compute these tables in accordance with the following def-
inition: Ti(A1, . . . , Ani

) = true if and only if there exists a proper color-
ing c′ : [i] → K such that c′([sij

, i]) = Aj for all 1 ≤ j ≤ ni and, for every Fl ∈ F
with Fl ⊆ [i], it holds that c′(Fl) = Cl. Such a coloring is called proper with
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respect to (A1, . . . , Ani
). Note that an instance is a yes-instance if and only

if Tn contains an entry set to true.
For position i = 1, initiate the table Ti as follows. According to Proposi-

tion 1, at each position in [n] there starts at most one input interval and ends
at most one input interval. Hence, there is exactly one interval in F1. Let F1 =
{F} and let C be the color multiset associated with F . Set T1({c′}) = true for
every c′ ∈ C.

For a position i > 1 compute the table Ti based on Ti−1 as described next.
By Proposition 1, for every position i, 2 ≤ i ≤ n, there is at most one in-
terval in Fi−1 \ Fi and at most one in Fi \ Fi−1. Thus, assume that Fi−1 =
{F ′, F1, . . . , Fq} and Fi = {F1, . . . , Fq, F

′′}, that is, Fi−1 ∩ Fi = {F1, . . . , Fq}
(if Fi−1 \ Fi = ∅ or Fi \ Fi−1 = ∅, then skip F ′ or F ′′ and the respective color
(sub)multisets in the following formulas). Let Fj = [sj , tj ] for all 1 ≤ j ≤ q.

For every tuple (A1, . . . , Aq, A
′′) that forms a chain and fulfills Aj ⊆ Cj with

|Aj | = i − sj + 1 for 1 ≤ j ≤ q and A′′ ⊆ C′′ with |A′′| = 1, set

Ti(A1, . . . , Aq,A
′′) = true ⇐⇒

∃x ∈ (

q
⋂

j=1

Aj) ∩ A′′ : Ti−1(C
′, A1 \ {x}, . . . , Aq \ {x}) = true.

(3)

Using Recursion (3), the algorithm computes the tables Ti for increasing
values of i (starting with i = 2). Finally, it outputs “Yes” if Tn contains a true
entry and “No”, otherwise. This completes the description of the algorithm.

For the correctness we show by induction on i that Ti is computed in accor-
dance with the above definition. Clearly, this is the case for i = 1.

For the correctness of the case i > 1, first note that we only consider
tuples (A1, . . . , Aq, A

′′) that form chains. This is correct since for a color-
ing c′ : [i] → K the tuple (c′([s1, i]), . . . , c

′([sj , i]), c
′([i, i])) forms a chain. For

the induction step we show the correctness of Recursion (3). That is, we show
that there exists a proper coloring c of [i] with respect to (A1, . . . , Aq, A

′′) (that
is, Ti(A1, . . . , Aq, A

′′) = true) if and only there is a proper coloring c′ of [i− 1]
with respect to (C′, A1 \ {x}, . . . , Aq \ {x}) for some x ∈ (

⋂q
j=1 Aj) ∩ A′′.

For the “⇒-direction” note that, if there is a proper coloring c of [i] with
respect to (A1, A2, . . . , Aq, A

′′), then c restricted to [i − 1] clearly is a proper
coloring of [i − 1] with respect to (C′, A1 \ {c

′(i)}, . . . , Aq \ {c
′(i)}).

For the “⇐-direction”, note that if there is an x ∈ (
⋂q

j=1 Aj) ∩ A′′ and a
proper coloring c′ of [i − 1] with respect to (C′, A1 \ {x}, . . . , Aq \ {x}), then
the extension c of c′ with c(j) := c′(j) for 1 ≤ j < i and c(i) := x is a proper
coloring of [i] with respect to (A1, . . . , Aq, A

′′).
Next, we show that the running time of the algorithm can be bounded

by O((cw +1)l · l · (k · cw)2 · log cw ·n). To this end, note that for every position
there are at most (cw+1)l tuples of color multisets (A1, . . . , Ani

) with Aj ⊆ Cij

and |Aj | = i−sij
+1, 1 ≤ j ≤ ni, that form a chain. This can be seen as follows.

Let Fz denote the interval in Fi with the smallest starting point. Note that a
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tuple of color multisets (A1, . . . , Ani
) that forms a chain corresponds to a par-

tition of Cz into (ni + 1) subsets. Since ni ≤ cw and for every color in Cz there
are at most (cw + 1) choices, there are at most (cw + 1)l such partitions. Next,
we show that in O(l · (k · cw)2 · log cw) time one can determine whether there
exists an x ∈ (

⋂q
j=1 Aj) ∩ A′′ such that Ti−1(C

′, A1 \ {x}, . . . , Aq \ {x}) = true.
To this end, we implement the dynamic programming tables Ti by dictionaries
for which the addition and the lookup of a key requires O(log(s)) comparisons,
where s is the size of the dictionary. Such a dictionary can, for example, be
realized by a balanced binary search tree. Then, for computing an entry of Ti

using Recursion (3), one first determines the colors in (
⋂q

j=1 Aj) ∩ A′′, which
is doable in O(k · cw) time if the multisets are realized by size-k arrays. Then,
the lookup in Tj−1 needs at most O(l · log (cw)) comparisons. To compare two
tuples one can iterate over the two tuples in parallel until finding a first pair
of multisets that are different and return the result of the comparison between
these multisets. Analogously, two multisets can be compared by comparing the
occurrence numbers of the colors. In total, one comparison of two tuples of color
multisets takes O(cw · k) time. Hence, for a given tuple of color multisets the
computations can be done in O(l · (k · cw)2 · log cw) time. This leads to a total
running time of O((cw + 1)l · l · (k · cw)2 · log cw · n).

Finally, to prove the second running time claimed in Theorem 4, we perform
an alternative analysis of the running time of the above algorithm. To this end,
we need the following observation. For a multiset M that contains k different
colors and for an integer q ≥ 1, there are at most (q + 1)k−1 size-q submultisets
of M ; first, note that for every color there are q + 1 choices for the number of
occurrences of this color in the subset (between 0 and q times). Second, note that
choosing the occurrence numbers of the first k−1 colors in a size-q subset (there
are at most (q + 1)k−1 choices) determines the occurrence number of the kth
color. With this observation, it is not hard to verify that for each position
one has to consider at most (l(k−1))cw = lcw·(k−1) tuples of multisets. Thus,
the dynamic programming tables are of this size and with the same analysis as
above the total running time can be bounded by O(lcw·(k−1) · (k · cw)3 log l · n).

2

Trivially, one can solve ICC in kn · poly(n, m) time by trying all k colors
for all n positions. Subsequently, we show that we can improve on this running
time bound by exploiting the fact that for two colors the problem is polynomial-
time solvable [2] (whereas it is NP-complete for three colors [5]). The idea is to
“guess” only k − 2 colors and the positions that have one of the two remaining
colors. For these positions, we then use the polynomial-time algorithm for ICC
with two colors, giving the following result.

Proposition 2. ICC can be solved in O((k−1)n ·g(n, m)) time, where g(n, m)
is the time needed to solve ICC for k = 2.

Proof. For each position 1 ≤ i ≤ n, we branch into k − 1 cases. The first
case corresponds to i being assigned color 1 or 2. The other k − 2 cases each
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correspond to i being assigned one of the other k − 2 colors. When there is
no more position that we can branch on, we first check whether any of the
interval constraints has been violated so far. That is, we check whether there is
an interval F with associated color multiset C and a color x ∈ {3, . . . , k} such
that the occurrence number of x in C is different from the number of positions
in F that are colored by x. If this is the case, then this branch does not lead
to a proper coloring. Otherwise, the positions with fixed colors, that is, the
positions that have been assigned a color from 3 to k, are removed from [n] and
the intervals with their color constraints are updated accordingly (that is, we
ignore the colors 3, . . . , k in the color constraints). For the remaining positions,
we can only assign colors 1 or 2. This problem can be solved in polynomial
time [2].

Overall, we branch into (k−1)n possibilities and for each of them the problem
can be solved in polynomial time. 2

For the practically relevant [2] NP-complete [5] case where k = 3, we can
achieve a further speed-up by the following simple observation: At least one of
the colors appears at most on n/3 positions.

Proposition 3. For k = 3, ICC can be solved in O(1.89n ·g(n, m)) time, where
g(n, m) is the time needed to solve ICC for k = 2.

Proof. For each of the three colors, we solve the problem of finding a coloring
in which this particular color is assigned to at most n/3 positions. We try all
possibilities of selecting the positions, and since at most n/3 positions have to
be selected, the number of these possibilities is

∑

0≤i≤n/3

(

n
i

)

. Using Stirling’s

approximation of factorials, we obtain an upper bound of O(1.89n) for this
number. For each of these possibilities, we then solve ICC for the remaining
two colors in polynomial time [2]. 2

Beigel and Eppstein [3] gave a thorough study of exact exponential-time
algorithms for the NP-complete 3-Coloring problem. It is tempting to inves-
tigate whether some of their tricks can be applied to ICC with three colors;
in particular, a simple randomized strategy presented by Beigel and Eppstein
might be promising. This is left as a challenge for future work.

6. Implementations and Experiments

We performed computational experiments on peptide fragment data that
were also used by Althaus et al. [2] to find out whether our theoretical algorithms
are valuable in practice. We considered only the non-trivial instances with more
than one fragment. Our aim was mainly to answer the following three questions:
First, what do the parameters derived from the NP-hardness reduction look like
in real-world data? Second, how do the presented algorithms behave on real-
world data? Third, what can we conclude from these experiments; for example,
can we find new promising parameterizations either from the data itself or from
the behavior of our algorithms?
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Table 3: Parameters and running times for peptide fragment data from Canzar et al. [6].
Algorithm 1 is the kl · poly(n, m) algorithm, Algorithm 2 stores all equivalent colorings, Al-
gorithm 3 stores only those colorings that differ in the segments overlapping with the last l

positions. The shown parameters are range n, number of intervals m, maximum interval
length l, and cutwidth cw; running times are given in milliseconds. In the column for Algo-
rithm 1 an entry “—” means that the the respective instance could not be solved because
the space consumption exceeded 2GB. In the columns for Algorithms 2 and 3 an entry “—”
means that the respective instance could not be solved within a time limit of one hour.

Instance n m l cw Algorithm 1 Algorithm 2 Algorithm 3

Cabin 78 34 74 21 — — —
CytoCA 27 6 16 5 11,511,587 1225 1642
CytoCB 26 6 26 4 — 1,690 1,649
CytoCC 15 5 14 4 88,684 427 528
FKBP-both-A 49 24 25 19 — 13,499 17,163
FKBP-both-B 11 4 7 4 403 50 46
FKBP-both-C 25 26 25 23 — — —
FKBP-both-D 4 2 3 2 3 33 31
FKBP-ilp-A 35 12 21 8 — 11,074 14,074
FKBP-ilp-B 16 5 9 3 1,838 237 219
FKBP-ilp-C 36 14 23 8 — 966,583 26,758
FKBP-mem-A 35 12 21 8 — 5,494 7,127
FKBP-mem-B 16 5 9 3 1,857 133 122
FKBP-mem-C 36 14 23 8 — 3,241,131 53,662
FKBP-xiii-A 22 16 21 16 — 1,453 2,224
FKBP-xiii-B 10 4 10 4 235 106 97
FKBP-xiii-C 11 4 7 4 440 48 45
FKBP-xiii-D 25 22 25 19 — 8,334 15,626
HorseHeart-A 17 10 17 7 1,047,098 2,831 4,197
HorseHeart-B 12 4 12 4 879 58 55
HorseHeart-C 22 8 11 7 32,750 880 1,669
HorseHeart-D 37 17 23 10 — — 6,443
HorseHeart-F 21 6 19 6 — 760 760

All experiments were run on an AMD Athlon 64 3700+ machine with 2.2GHz,
1M L2 cache, and 3GB main memory running under the Debian GNU/Linux 4.0
operating system with Java version 1.5.0 14; the Java VM was invoked with
2GB heap size.6

Aspects of the Data and Choice of Algorithms. First, we examined the data
with respect to the parameters we identified from the NP-hardness proof in Sec-
tion 2. The most obvious observation is that k = 3 in all instances; the other
parameter values are shown in Table 3. Unfortunately, the difference between

6The Java program is free software and available from
http://theinf1.informatik.uni-jena.de/icc
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range n and maximum interval length l is not that big in many instances. This
is usually due to one or two intervals that are very long in comparison to the
other intervals. Furthermore, the cutwidth cw is usually much larger than k
and only in trivial instances less than 3. Hence, we have not implemented
our algorithm for cw = 2 since it seems unattractive for the available real-
world data. We decided to implement the dynamic programming algorithm
with running time kl · poly(n, m) (called Algorithm 1 in the following) pre-
sented in the proof of Theorem 3 because it was conceptually the easiest and
because, with k = 3, its running time of 3l · poly(n, m) is much better than
the running times of l! · poly(n, m) and (cw + 1)l · poly(n, m) of the algorithms
from Theorems 1 and 4. Moreover, it is easy to extend this algorithm to solve
the error minimization variant of ICC introduced by Althaus et al. [2]. Note,
however, that the algorithm from Theorem 4 has an alternative running time
bound which, for k = 3, is l2cw · poly(n, m). Since in the data often cw ≪ l
it seems worthwhile to consider this algorithm, even though, compared to the
algorithm from Theorem 3, it uses three parameters (l, k, and cw) instead of
two (k and l). We thus implemented two algorithms that can be seen as vari-
ants of the algorithm from Theorem 4. The main idea of these two algorithms
can be described as follows. We use dynamic programming. Both algorithms
process in “left” to “right” order. The positions for which values are stored
in the dynamic programming table are the start- and endpoints of the input
intervals. For such a position i we store a description of each proper coloring
of range [i]. Next, we describe this description in more detail. A segment of [n]
is a subinterval [s, t] ⊆ [n] such that each position of [s, t] is contained in ex-
actly the same set of input intervals and [s, t] is maximal with respect to this
property. A description of a coloring for [i] contains for each segment [s, t] of [i]
and for each color c the number of positions of [s, t] that are colored with c.
When creating the table entries for position i, the algorithms try all possible
combinations of extending a proper coloring stored for [j], j < i, with colorings
of the segment [j + 1, i], where j is the last position of the preceding segment.
Basically, the algorithm as described so far (Algorithm 2) is an enumeration of
all proper colorings. We have also implemented an adaption of this algorithm
that, as long as there are two colorings that differ in general, but not in the
segments that overlap with the last l positions, removes one of these colorings
from the dynamic programming table (Algorithm 3). This latter algorithm can
be shown to have a running time of l(k−1)cw · poly(n, m), as it stores at most as
many combinations as the algorithm from Theorem 4. Finally, we implemented
both algorithms to not only store proper colorings, but also colorings whose
total sum of errors is below an error threshold ǫ, where the sum of errors is
defined as by Althaus et al. [2]. This way an optimal solution can be found by
incrementally increasing the error threshold until one coloring that has an error
below the considered threshold is found.

Evaluation. Algorithm 1 can compute the minimum error for all given instances
with l ≤ 17 (11 of 23 instances in total). However, one can observe an explosion
in the running time for growing values of l. This is expected since for every
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length-l subinterval this algorithm enumerates all 3l colorings. Note that for
instances with l > 17, the space consumption of our implementation is too large
and the algorithm terminates immediately.

In terms of running time, for most instances there is no big difference between
Algorithms 2 and 3 and both algorithms outperform Algorithm 1. Algorithms 2
and 3 also have a moderate space consumption for all instances. Moreover,
Algorithms 2 and 3 can solve all but two instances within one hour. For many
instances, however, the performance is much better. For example, 14 out of 23
instances could be solved in less than four seconds. Interestingly, the fact that
Algorithm 3 stores only feasible colorings if they differ in the last l positions and
that Algorithm 2 stores all feasible colorings does not result in better running
times of Algorithm 2 for most instances. Recall that Algorithms 2 and 3 check
for an increasing error value ǫ whether the input instance admits a coloring
with error ǫ. The case ǫ = 0 corresponds to the decision version as introduced
in Section 1. For the case that ǫ = 0 Algorithms 2 and 3 can solve all instances
in less than one second (not shown here).

So far our algorithms are not competitive with the state-of-the-art algorithms
for ICC such as the ILP based approach by Althaus et al. [2] that solves every
instance in less than 10 seconds or a polynomial-delay algorithm by Canzar et
al. [6] that solves every instance in less than 57 seconds. In particular, Algo-
rithm 1 is rather slow and has a high space consumption. Algorithms 2 and 3
perform much better but are still slower than the polynomial-delay algorithm
due to Canzar et al. [6]. However, there is one instance (FKBP-mem-A) where
Algorithm 2 (running time 5.5 sec) is competitive with the polynomial-delay
algorithm by Canzar et al. [6] (running time 7.81 sec) and one instance (FKBP-
mem-C) where Algorithm 3 (running time 53.66 sec) is competitive with the
polynomial-delay algorithm [6] (running time 56.31 sec).

In summary, for favorable parameter constellations our algorithms solve ICC
within seconds. However, for some instances (such as FKBP-both-C) none
of the considered parameters are sufficiently small. Accordingly, none of the
implemented algorithms solve this instance within acceptable running time.

Conclusions from the Experiments. The experiments show that the approach
by deconstructing an NP-hardness proof can lead to algorithms that are capable
of solving real-world instances. However, it is also obvious that the theoretical
algorithms if implemented straightforwardly, such as Algorithm 1, may be in-
efficient. It also becomes clear that the parameters should not only be derived
from deconstructing intractability but also from examining the structure of the
data. For example, cw is often much smaller than l which might be a reason
for the relatively good performance of Algorithms 2 and 3 in comparison with
Algorithm 1. Also note that often l ≈ n, but the number of long intervals is
usually very small. Hence, it is intriguing to consider the parameter “number
of long intervals” in combination with other parameters.
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7. Conclusion

Through deconstructing intractability and using methods of parameterized
algorithmics, we started a multivariate complexity analysis of ICC. Refer to
Tables 1 and 2 in Sections 4 and 5 for some overview and several challenges
for future research. To name a concrete one here, we emphasize our specific
interest in the parameter m (number of intervals). Beyond that, there remain
many further tasks: For instance, also combinations of three or more parameters
may be relevant. Besides that, already for combinations of two single parameters
there are several qualitatively different fixed-parameter tractability results one
can strive for and which typically are independent from each other. For instance,
for a combined parameter (p1, p2) the incomparable combinatorial explosions pp2

1

and pp1

2 can both be useful for solving specific real-world instances. In addition,
although polynomial-time executable data reduction rules played a significant
role in this work, we achieved no nontrivial problem kernelization results (see [4,
15] for general outlines on this topic) for fixed-parameter tractable problem
variants. Finally, in our theoretical algorithms, we focused attention on the
decision version and corresponding exact solutions; the investigations should be
extended to the optimization variants. Summarizing, the theoretical research
challenges offered by ICC and, more generally, the multivariate algorithmics
approach [9, 18], seem to be (almost) inexhaustible. Finally, our experimental
work indicates the practical potential of a multivariate approach to the design
of combinatorial algorithms for NP-hard problems such as ICC.
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