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Abstract. There are different ways for an external agent to influence
the outcome of an election. We concentrate on “control” by adding or
deleting candidates of an election. Our main focus is to investigate the
parameterized complexity of various control problems for different vot-
ing systems. To this end, we introduce natural digraph problems that
may be of independent interest. They help in determining the parame-
terized complexity of control for different voting systems including Llull,
Copeland, and plurality votings. Devising several parameterized reduc-
tions, we provide a parameterized complexity overview of the digraph
and control problems with respect to natural parameters.

1 Introduction and Preliminaries

The investigation of voting systems is an important field of interdisciplinary
research. Besides obvious classical applications in political or other elections,
voting systems also play an important role in multi-agent systems or rank ag-
gregation. In addition to work that focuses on the problem to determine the
winner of an election for different voting systems, there is a considerable amount
of work investigating how an external agent or a group of voters can influence the
election in favor or disfavor of a distinguished candidate. The studied scenarios
are manipulation [3], electoral control [1, 6–8], lobbying [2], and bribery [6]. In
this work, we investigate the parameterized complexity of some variants of elec-
toral control and closely related digraph problems. Before describing our results,
we introduce the considered problems.

Problem statements. An election (V, C) consists of a set V of n votes and a
set C of m candidates. A vote is an ordered preference list containing all candi-
dates. To control an election, an external agent, traditionally called chair, can
change the voting procedure to reach certain goals. The considered types of con-
trol are adding, deleting, or partitioning candidates or voters [1, 8]. Further, one
distinguishes between constructive control (CC), that is, the chair aims at mak-
ing a distinguished candidate the winner, and destructive control (DC), that is,
the chair wants to prevent a distinguished candidate from winning [8]. In this
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work, we focus on candidate control, that is, either deleting or adding candi-
dates, for plurality and Copelandα votings. In plurality voting, for every vote the
candidate that is ranked first in the preference list gets one point. The score of
a candidate is the total number of its points. A candidate with the highest score
wins. Note that we still need the whole preference lists of the voters to see the
effects of deleting or adding candidates. Copelandα voting is based on pairwise
comparisons between candidates: A candidate wins the pairwise head-to-head
contest against another candidate if he is better positioned in more than half of
the votes. The winner of a head-to-head contest is awarded one point and the
loser receives no point. If the candidates are tied, both candidates get α points
for 0 ≤ α ≤ 1. A Copelandα winner is a candidate with the highest score. Fal-
iszewski et al. [6] devote their paper to the two important special cases α = 0,
denoted as Copeland, and α = 1, denoted as Llull. Next, we introduce two di-
graph decision problems which are closely related to constructively controlling
Copeland and Llull by deleting candidates.1

Max-Outdegree Deletion (MOD)
Given: A digraph D = (W, A), a distinguished vertex wc ∈ W , and an
integer k ≥ 1.
Question: Is there a subset W ′ ⊆W \{wc} of size at most k such that wc

is the only vertex that has maximum outdegree in D[W \W ′]?

Analogously, we define Min-Indegree Deletion (MID), where one wants to
make a distinguished vertex to be the only vertex with minimum indegree. The
correspondence to elections is based on the fact that the relations between the
candidates can be depicted by a digraph where the candidates are represented
by the vertices and there is an arc from vertex c to vertex d iff the corresponding
candidate c defeats the corresponding candidate d in the head-to-head contest.
Then, the deletion of a vertex one-to-one corresponds to the deletion of a candi-
date in the election. Further, the Copeland score of a candidate c is exactly the
number of the out-neighbors of the corresponding vertex vc and the Llull score
is the total number of vertices minus the number of in-neighbors of vc.

Known results. A series of publications [1, 6–8] provides a complete pic-
ture of the classical computational complexity for four standard voting sys-
tems (approval, plurality, Condorcet, and Copelandα) for ten basic types of
control.2 Concerning candidate control, plurality and Copeland votings lead
to NP-hardness results whereas all other voting systems are either immune or
allow for polynomial-time solvability [6–8]. Regarding parameterized complex-
ity, Faliszewski et al. [7] obtained some first results. They considered control
of Copelandα voting with respect to the parameters “number of candidates”
and “number of votes”. For candidate control they obtained fixed-parameter
tractability with respect to the parameter “number of candidates”. The param-
eterized complexity with respect to the parameter “number of votes” was left

1 The digraph problems that are equivalent to adding candidates are omitted due to
space restrictions.

2 Besides the classification into P and NP-hard, a voting system can be classified as
“immune” against a type of control if a non-winner can never be made a winner.
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Table 1. Parameterized complexity of Max-Outdegree Deletion and Min-

Indegree Deletion.

# deleted vertices k maximum degree d (k, d)
MOD MID MOD MID MOD MID

general digraphs W[2]-c W[2]-c NP-c for d ≥ 3 FPT FPT FPT
acyclic digraphs W[2]-c P NP-c for d ≥ 3 P FPT P
tournaments W[2]-c W[2]-c - - - -

open. To the best of our knowledge, there is no previous work dealing with the
newly introduced digraph problems MOD and MID.

Motivation. First, from the “control person’s” point of view, it is interest-
ing to find efficient strategies to reach his goal. There are legal scenarios as for
example persuading additional players to participate in a sport competition in
order to make the favorite player the winner. Parameterized complexity analysis
is meaningful in this context. Second, the fact that a voting system is suscep-
tible to control or manipulation can be considered as an undesirable property.
Thus, the goal of most publications is to show that, if control is not impossi-
ble, it is at least computationally hard (often showing NP-hardness). Although
NP-hardness is not a sufficient criterion, as it does not imply hardness on the
practically relevant average case, it is plausible to investigate whether there are
any hard instances at all. However, as also noted by Conitzer et al. [3], such
hardness results lose relevance if there are efficient fixed-parameter algorithms
for realistic settings.

Our contributions. We provide a first study of the two natural digraph prob-
lems MOD and MID and show that they are closely related to the considered
control problems. In Section 2, we investigate the computational complexity of
MOD and MID for several special graph classes and parameters providing a dif-
ferentiated picture of their parameterized complexity including algorithms and
intractability (Table 1). The main technical achievement of this part is to show
that MOD and MID are W[2]-complete in tournaments. Some of the considered
special cases and parameterizations of the digraph problems map to realistic vot-
ing scenarios with presumably small parameters. Based on these connections and
by giving further parameterized reductions, in Section 3 we provide an overview
of parameterized hardness results for control problems (Table 2). Regarding the
structural parameter “number of votes”, we answer an open question of Fal-
iszewski et al. [7] for Llull and Copeland votings by showing that even for a
constant number of voters candidate control remains NP-hard. Due to the lack
of space, we defer many details and proofs to a full version.

Preliminaries. In an election, we can either seek for a winner, that is, if there
are several candidates who are best in the election, then all of them win, or for
a unique winner. Note that a unique winner does not always exist. We only con-
sider the unique winner case, but all our results can be easily modified to work
for the winner case as well. We focus on control by adding candidates (AC) or
deleting candidates (DC). Then, for example, we can define the decision prob-
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lems of constructively controlling a Copelandα election as follows:

CC-DC-Copelandα

Given: A set C of candidates, a set V of votes with preferences over C,
a distinguished candidate c ∈ C, and an integer k ≥ 1.
Question: Is there a subset C′ ⊆ C of size at most k such that c is
(unique) Copelandα winner in the election (V, C\C′)?

CC-AC-Copelandα

Given: Two disjoint sets C, D of candidates, a set V of votes with prefer-
ences over C ∪D, a distinguished candidate c ∈ C, and an integer k ≥ 1.
Question: Is there a subset D′ ⊆ D of size at most k such that c is
(unique) Copelandα winner in the election (V, C ∪D′)?

The other problems are defined analogously (see for example [6, 8]). The posi-
tion of a candidate a in a vote v is the number of candidates that are better
than a in v plus one. That is, the leftmost (and best) candidate in v has posi-
tion 1 and the rightmost has position m. Further, within every election we fix
some arbitrary order over the candidates. Specifying a subset C′ of candidates
in a vote means that the candidates of C′ are ordered with respect to that fixed

order. An occurrence of
←−
C′ in a vote means that the candidates of C′ are ordered

in reverse to that fixed order.
For a directed graph (digraph) D = (W, A) and for a vertex w ∈ W , the set

of in-neighbors of w is defined as Nin(w) := {u ∈ W | (u, w) ∈ A} and the set
of out-neighbors of w is given by Nout(w) := {u ∈ W | (w, u) ∈ A}. Moreover,
the indegree (outdegree) of w is defined as indeg(w) := |Nin(w)| (outdeg(w) :=
|Nout(w)|). Further, the degree is defined as deg(w) := indeg(w) + outdeg(w).
In digraphs, we do not allow bidirected arcs and loops. An l-arc coloring C :
A → {1, 2, . . . , l} is called proper if any two distinct arcs of the same color do
not share a common vertex. A tournament is a digraph where, for every pair of
vertices u and v, there is either (u, v) or (v, u) in the arc set.

A problem is called fixed-parameter tractable (FPT) with respect to a param-
eter k if it can be solved in f(k)·nO(1) time, where n denotes the input size, and f
is an arbitrary computable function. The first two levels of (presumable) param-
eterized intractability are captured by the complexity classes W[1] and W[2]. A
parameterized reduction reduces a problem instance (I, k) in f(k) · |I|O(1) time
to an instance (I ′, k′) such that (I, k) is a yes-instance if and only if (I ′, k′) is a
yes-instance and k′ only depends on k but not on |I|.

As discussed in the introduction, there are parameterized reductions from
MOD (MID) to CC-DC-Copeland (CC-DC-Llull) with respect to the pa-
rameters number of deleted vertices and candidates, respectively. The reverse pa-
rameterized reductions can be obtained by a simple construction of Faliszewski
et al. [6]. Thus, we say that the problems are FPT-equivalent.

2 Parameterized Complexity of MOD and MID

This section is concerned with the parameterized complexity of MOD and MID
with respect to the parameters “number of deleted vertices” k and “maximum
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Subsets
F = {F1, F2, . . . , Fm}
over elements =⇒
S = {s1, s2, . . . , sn},
e.g., F1 = {s1, s3},
F2 = {s2, s3}, ...

...

...

......

... ...

s1 s2 s3 sj sn

wc

d1 d2 dx

iff sj ∈ Fi

e1 e2 ez

z := maxm
i=1 |Fi|

F1 F2 F3 Fi Fm

outdeg(Fi) = outdeg(wc)

dummy vertices such that

Fig. 1. Parameterized reduction from a Hitting Set-instance (left) to an MOD-
instance (right). Deleting an “element-vertex” sj in the digraph has the effect that
for all “subset-vertices” corresponding to the subsets containing sj the outdegree is
decreased below the outdegree of the distinguished vertex wc, that is, the corresponding
subsets are “hit” in the Hitting Set-instance. Further, assume that there is a solution
for the MOD-instance that contains a subset vertex Fi or one of its dummy neighbors.
Then, instead of this vertex we can delete any subset-neighbor sj of Fi. Based on these
observations one can show that there is a hitting set of size k iff wc can become vertex
with maximum outdegree by deleting k vertices.

degree” d for different classes of graphs. Our results are summarized in Table 1.
In the following, we only prove W[2]-hardness. Using the machinery of Downey
and Fellows [4], it is not hard to also show containment in W[2].

Theorem 1. Max-Outdegree Deletion is W[2]-complete with respect to the
parameter “number of deleted vertices” in acyclic digraphs and NP-complete in
acyclic digraphs with maximum degree three.

The W[2]-hardness can be shown by a parameterized reduction from the
W[2]-complete Hitting Set (HS) problem [5]. Given a subset family F =
{F1, F2, . . . , Fm} ⊆ 2S of a base set S = {s1, s2, . . . , sn} and an integer k ≥ 1,
the Hitting Set problem asks to decide whether there exists a subset S′ ⊆ S
of size at most k such that for every 1 ≤ i ≤ m we have S′ ∩ Fi 6= ∅. We
defer the formal proof of Theorem 1 to the full version of this paper. Here, we
only illustrate the basic construction (see Fig. 1). The resulting digraph of the
MOD-instance is acyclic, which gives the first part of the theorem. The sec-
ond part directly follows from the fact that Hitting Set is NP-complete even
if every subset has size two and every element occurs in exactly three subsets
(3X-2-Hitting Set).

Proposition 1. a) Min-Indegree Deletion can be solved in polynomial time
in acyclic digraphs. In general digraphs, it is fixed-parameter tractable with re-
spect to the parameter “indegree of the distinguished vertex wc”.

b) Max-Outdegree Deletion is fixed-parameter tractable with respect to
the combined parameters “outdeg(wc)” and “number of deleted vertices k”.
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Proof. (Sketch) a) First part (acyclic graphs): Since in acyclic graphs there al-
ways exists a vertex with indegree zero, wc must have indegree zero to be the
only minimum indegree vertex. Thus, one can iteratively delete all other vertices
with indegree zero.

Second part (parameter indeg(wc)): If one knows for an MID-instance which
in-neighbors of the distinguished vertex wc are part of a minimum solution,
then the problem becomes trivial: One can delete these vertices and extend
the resulting partial solution to a minimum-cardinality solution. For this, one
iteratively adds all vertices of indegree smaller than the (new) indegree of wc to
the solution since all vertices of indegree smaller than the distinguished vertex
must be deleted. Hence, exhaustively trying all subsets of in-neighbors of wc

yields an algorithm with running time O(2indeg(wc) · |W |2).
b) Here, we give a simple branching strategy: Consider a vertex u ∈ W \{wc}

with outdegree at least outdeg(wc). Furthermore, let N ⊆ Nout(u) with |N | =
outdeg(wc). Then, we have to delete one of the vertices in (N ∪{u})\{wc}, that
is, we can branch into at most outdeg(wc)+1 cases. In each case, we can decrease
the parameter k by one, leading to a search tree of size O((outdeg(wc)+1)k). ⊓⊔

The following theorem is based on a parameterized reduction from the W[2]-
complete Dominating Set problem [5]. The basic idea is similar to the Hitting

Set reduction (Fig. 1), but the details are quite involved.

Theorem 2. Max-Outdegree Deletion and Min-Indegree Deletion are
W[2]-complete with respect to the parameter “number of deleted vertices” even
in the case that the input graph is a tournament.

3 Parameterized Complexity of Candidate Control

In this section, we turn our attention to elections. For candidate control in
Llull and Copeland votings we show NP-hardness for a constant number of
votes. Further, we provide parameterized intractability results with respect to
the number of deleted/added candidates for plurality and Copelandα votings.

Number of votes as parameter. In many election scenarios there is only a small
number of votes. For example, consider a human resources department where few
people are deciding which job applicant gets the employment. An open question
of Faliszewski et al. [7] regards the parameterized complexity of Copelandα elec-
tions with respect to the parameter “number of votes”. We answer this question
for Llull and Copeland.

Theorem 3. CC-DC-Copeland is NP-complete for six votes, CC-AC-Cope-

land is NP-complete for eight votes, CC-DC-Llull is NP-complete for ten
votes, and CC-AC-Llull is NP-complete for six votes.

Proof. (Sketch) For all problems NP-membership is obvious. We only give the
NP-hardness proof for CC-DC-Copeland to demonstrate the basic idea.
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The proof consists of two phases. The first phase is a reduction from 3X-2-

Hitting Set to MOD as depicted in Fig. 1. The digraph D of a resulting MOD-
instance (D, wc, k) has maximum degree three and the underlying undirected
graph of D is bipartite. More precisely, one partition consists of the subset-
vertices and wc, and the other partition consists of the element-vertices and the
neighbors of wc. As we reduce from 3X-2-Hitting Set, we do not have any
further dummy vertices. In the second phase we show that D can be encoded by
an election with only six votes by exploiting this special structure of D.

Now, we describe the second phase. Due to König [9] we know that a bipartite
graph is ∆-edge-colorable, where ∆ denotes the maximum degree of the graph.
Moreover, a corresponding proper ∆-edge coloring can be computed in polyno-
mial time. Thus, for D there exists a proper 3-arc-coloring C : A → {R,G,B}.
Note that in the underlying undirected graph of D the edges of the same color
class form a matching, that is, two arcs of the same color do not share a common
vertex. Hence, the coloring C partitions the arc set into three classes of indepen-
dent arcs. We next describe how the arcs of graph D can be encoded in an election
with six votes. Let AR = {(r1, r

′
1), . . . , (rl, r

′

l)} denote the arcs colored byR. Fur-
thermore, W

R
denotes the set of vertices that are not incident to any arc of AR.

To encode AR, we add the two votes r1 > r′1 > r2 > r′2 > · · · > rl > r′l > W
R

and
←−−
W

R
> rl > r′l > · · · > r2 > r′2 > r1 > r′1 to the election. In the same way

we add two votes for the arcs colored by B and G, respectively. The correctness
of the construction follows from two observations. First, since the arcs of the
same color do not share common endpoints, in every vote all vertices occur ex-
actly once and we have a valid election. Second, consider an arc (w′, w′′) ∈ A
with C((w′, w′′)) = X for any color X ∈ {R,B,G}. Then, w′ defeats w′′ in the
votes vX,1 and vX,2 and ties with w′′ in the remaining four votes. Moreover,
since every arc occurs in exactly one color class, all arcs are encoded, and, since
all other candidates are tied in every pair of the votes, we have ties between all
other pairs of candidates.

In summary, in the constructed Copeland election a candidate c can become
the unique winner by deleting k candidates iff in D the corresponding vertex wc

can become the maximum outdegree vertex by deleting k vertices. ⊓⊔

Number of deleted/added candidates as parameter. To control an election with-
out raising suspicion one may add or delete only a limited number of candidates.
Here, we investigate whether it is possible to obtain fixed-parameter algorithms
under this assumption. More specifically, we consider the parameterized com-
plexity of destructive and constructive control by adding or deleting a fixed
number of candidates. Our results are summarized in Table 2. It turns out that
all NP-complete problems are intractable from this parameterized point of view
as well. This even holds true for plurality voting, which can be considered as the
“easiest” voting system in terms of winner evaluation and for which the Manip-

ulation problem can be solved optimally by a simple greedy strategy [3].

Copeland. For elections without ties in all pairwise head-to-head contests,
CC-DC-Copelandα coincides for all 0 ≤ α ≤ 1, since these problems only differ
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Table 2. Results in boldface are new. The results for Copelandα hold for all 0 ≤ α ≤ 1.
The W[2]-hardness results for CC-AC-Plurality and DC-AC-Plurality follow from the
NP-completeness proofs [1, 8]. The polynomial-time (P) results are from [6, 7].

Copelandα Plurality
CC DC CC DC

Adding Candidates (AC) W[2]-c P W[2]-h W[2]-h
Deleting Candidates (DC) W[2]-c P W[2]-h W[1]-h

in the way ties are evaluated. As discussed in the introduction MOD and CC-
DC-Copelandα are FPT-equivalent. Using the same reductions one can show
that MOD in tournaments is FPT-equivalent to CC-DC-Copelandα without ties.
Thus, the W[2]-hardness of CC-DC-Copelandα without ties follows directly from
Theorem 2.3 For adding candidates we obtain W[2]-hardness using similar ideas.

Plurality. For plurality voting, the W[2]-hardness results for control by adding
candidates follow from the reductions for the NP-hardness [1, 8]. In contrast, the
reductions used to show NP-hardness for control by deleting candidates [1, 8] do
not imply their parameterized hardness. Thus, we develop new parameterized
reductions to show W[1]/W[2]-hardness.4 For the constructive case we can show
W[2]-hardness by a reduction from MOD. Note that the encoding of a MOD
instance into a plurality election is more demanding than for Copeland voting
and the other direction (encoding a plurality election into MOD) is not obvious.

Theorem 4. Constructive control of plurality voting by deleting candidates is
W[2]-hard with respect to the parameter “number of deleted candidates”.

Proof. (Sketch) We present a parameterized reduction from MOD. Given an
MOD instance (D = (W, A), wc, k) with W = {w1, w2, . . . , wn} and wc = w1,
we construct an election (V, C) as follows: We have one candidate corresponding
to every vertex, that is, C′ := {ci | wi ∈ W}. The set of candidates C then
consists of C′ and an additional set F of “dummy” candidates (only used to “fill”
positions that cannot be taken by other candidates in our construction). The set
of votes V consists of two subsets V1 and V2. In V1, for every ci ∈ C′ we have
outdeg(wi) votes in which ci is at the first position and with dummy candidates in
the positions from 2 to k+1. Then, for every such vote, the remaining candidates
follow in arbitrary order. In V2, for every ci ∈ C′ we have |W | votes in which ci

is at the first position. For all candidates cj 6= ci with wj /∈ Nin(wi), we observe
that in exactly one of these |W | votes cj is at the second position. In all other
of these votes, the second position is filled with a dummy candidate. Moreover,
we add dummies to all positions from 3 to k + 1. Concerning the dummies, in
V1 and V2 we ensure that every dummy candidate f ∈ F has a position better
than k + 2 only in one of the votes. This can be done such that the size of F

3 Having no ties in the pairwise head-to-head contests is a realistic scenario. It is
always the case for an odd number of votes and likely for a large number of votes.
In contrast, the NP-hardness proofs of the considered problems rely on ties [6, 7].

4 The class containment for all kinds of candidate control in plurality voting is open.
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is less than (k + 1) · |V |. The dummies exclude the possibility of “accidently”
getting candidates in the first position. Note that by deleting k candidates only
a candidate that is at one of the first k +1 positions in a vote has the possibility
to increase his plurality score. Further, by construction, the dummy candidates
fulfill the following two conditions. First, the score of a dummy candidate can
become at most one. Second, it does never make sense to delete a dummy as by
this only other dummies can get into the first position of a vote. Next, we prove
the correctness of the reduction.

Claim: Candidate c1 can become the plurality winner of (V, C) by deleting k
candidates iff w1 can become the only maximum-degree vertex in D by
deleting k vertices.

“⇒”: Denote the set of deleted candidates by R. We show that after deleting
the set of vertices WR := {wi | ci ∈ R} the vertex w1 is the only vertex with
maximum degree. Before deleting any candidates, for every candidate ci we have
score(ci) = score(c1)+ si with si := outdeg(wi)−outdeg(w1). After deleting the
candidates in R, candidate c1 is the winner. Hence, for i = 2, . . . , |W | we must
have either that score(ci) < score(c1) or that ci is deleted. For a non-deleted
candidate ci with i > 1 the difference between score(ci) and score(c1) must
be decreased by at least si + 1. By construction, the only way to decrease the
difference by one is to delete a candidate such that c1 becomes first in one more
vote and ci does not increase its number of first positions. All candidates that can
be deleted to achieve this correspond to vertices in Nin(wi)\Nin(w1). To improve
upon ci we must delete at least si + 1 candidates that fulfill this requirement.
Hence, in D the outdegree of wi is reduced to be less than the outdegree of w1.

“⇐”: Let T ⊆ D denote the solution for MOD. We can show (“reverse” to the
other direction) that by deleting the set of candidates CT := {ci | wi ∈ T }
candidate c1 becomes a plurality winner. ⊓⊔

In contrast to Copelandα elections, for plurality elections destructive control by
deleting candidates is NP-hard [8]. We show that it is even W[1]-hard by pre-
senting a parameterized reduction from the W[1]-complete Clique problem [5].
Given an undirected graph G = (W, E) and a positive integer k, the Clique

problem asks to decide whether G contains a complete subgraph of size at least k.

Theorem 5. Destructive control of plurality voting by deleting candidates is
W[1]-hard with respect to the parameter “number of deleted candidates”.

Proof. Given a Clique instance (G = (W, E), k), we construct an election as
follows: The set of candidates is C := CW ⊎ CE ⊎ {c, w} ⊎D with CW := {cu |
u ∈ W}, CE := {cuv | {u, v} ∈ E}, and a set of dummy candidates D. In the
following, the candidates in CW and CE are called vertex candidates and edge
candidates, respectively. Further, we construct the votes in a way such that w is
the candidate that we like to prevent from winning, c is the only candidate that
can beat w, and D contains dummy candidates that can gain a score of at most
one. In the set of votes V we have for every vertex u ∈W and for each incident
edge {u, v} ∈ E one vote of the type cu > cuv > c > . . . , that is, there are 2 · |E|
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votes of this type, two for every edge. Additionally, V contains |W |+ k · (k− 1)
votes in which w is at the first position and |W | + 1 votes in which c is at the
first position. In all votes, the remaining free positions between 2 and k+

(

k
2

)

+1
are filled with dummies such that every dummy occurs in at most one vote at a
position better than k+

(

k
2

)

+2. This can be done using less than |V |·(k+
(

k
2

)

+1)
dummy candidates. In every vote the candidates that do not occur in this vote
at a position less than (k +

(

k

2

)

+ 1) follow in arbitrary order.

Claim: Graph G contains a clique K of size k iff candidate c can become
plurality winner by deleting k′ := k +

(

k

2

)

candidates.

“⇒”: Delete the k +
(

k
2

)

candidates that correspond to the vertices and edges

of K. Then, for every of the
(

k

2

)

deleted edge candidates we also deleted the two
vertex candidates that correspond to the endpoints of this edge. Therefore, for
every of the

(

k

2

)

edges candidate c gets in the first position in two more votes.

Hence, the score of candidate c is increased by 2 ·
(

k
2

)

= k · (k− 1) and the score
of candidate w is not affected. Thus, the total score of w is |W |+ k · (k− 1) and
the total score of c is |W |+ k · (k − 1) + 1; therefore, w is defeated by c.
“⇐”: Note that, by construction, we cannot decrease the score of w and we can-
not increase the score of a vertex candidate (which is at most |W | − 1). Further,
by the deletion of at most k′ candidates the score of a dummy candidate can
become at most one, and the score of an edge candidate can become at most two.
Hence, c is the only candidate that can prevent w from winning. Furthermore,
as the deletion of at most k′ dummies never moves c into a first position, we can
assume that the solution deletes only edge and vertex candidates.

We omit the proof that the only way to increase the score of c by at least k ·
(k − 1) is to choose edge and vertex candidates that correspond to the vertices
and edges of a clique of size k. ⊓⊔
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