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Abstract. An undirected graph G = (V, E) is the k-power of an undi-
rected tree T = (V, E′) if (u, v) ∈ E iff u and v are connected by a path
of length at most k in T . The tree T is called the tree root of G. Tree
powers can be recognized in polynomial time. The thus naturally arising
question is whether a graph G can be modified by adding or deleting
a specified number of edges such that G becomes a tree power. This
problem becomes NP-complete for k ≥ 2. Strengthening this result, we
answer the main open question of Tsukiji and Chen [COCOON 2004]
by showing that the problem remains NP-complete when additionally
demanding that the tree roots must have bounded degree.

1 Introduction

Root finding is a natural and well-studied problem in graph algorithmics (see [1,
Section 10.6] and [10] for surveys). We call a graph G′ = (V ′, E′) a k-root of a
graph G = (V, E) if V ′ = V and there is an edge between vertices u and v in G
iff there is a path of length at most k between u and v in G′. The other way
round, G is the k-power of G′. Even determining whether a graph G possesses
a 2-root is NP-complete [12].

Kearney and Corneil [8] directed the attention to a special case of the root
finding problem by demanding G′ to be a tree. Before that, Lin and Skiena [11]
have already shown that it can be decided in linear time whether a graph is
the 2-power of a tree. Kearney and Corneil generalized this result by showing
that the tree root finding problem—called k-Tree Power problem—can be
solved in polynomial time for any k. Moreover, they introduced an important
generalization of root finding, yielding a natural graph modification problem.
The question now is, given a graph G and a nonnegative integer `, can G be
modified by adding or deleting at most ` edges such that the resulting graph has
a k-tree root. Call this problem Closest k-Tree Power. This “error correction
scenario” takes into account that a graph might be close to being the k-power
of a tree and one tries to find out how close it actually is by considering the
number ` of edge modifications needed. Kearney and Corneil have shown that
the Closest k-Tree Power problem is NP-complete for k ≥ 3. Moreover, it
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is reported that it is also NP-complete in the case k = 2 [7]. We strengthen these
results to the case that the root trees may only have bounded degree.

Motivated by applications in computational biology, variants of k-Tree

Power and Closest k-Tree Power have recently been studied [13,2]. In
these problems, only the leaves of the root are in one-to-one correspondence with
the given graph vertices, the inner tree nodes are considered as “Steiner nodes”
(see [13,2] for details). The corresponding problems Closest k-Leaf Power

and Closest k-Phylogenetic Power (where in the latter case all inner nodes
of the tree have to have degree at least three) are NP-complete for k ≥ 2. Intu-
itively speaking, these problems allow for a higher degree of freedom by freely
choosing inner tree nodes and this may explain why, as opposed to tree root
finding, polynomial-time solvability of the corresponding recognition problems
k-Leaf Power and k-Phylogenetic Power is only known for k ≤ 4 [13,2].
The cases k > 4 are open in both settings. In addition, it has been strongly
advocated to study the problems when the maximum node degree of the root
tree is bounded from above by a constant [2,3,14]. In particular, Tsukiji and
Chen [14] have proven that, for k ≥ 3, the Closest k-Phylogenetic Power

problem (called Closest k-Phylogenetic Root there) remains NP-complete
when one demands that the root tree has bounded degree. The case k = 2 is
open. Moreover, they emphasize that they leave open the “more fundamental”
problem to determine the complexity of Closest k-Tree Power [14, page 461]
in case of bounded degrees. They conjecture NP-completeness. We settle their
open problem by proving this conjecture. More precisely, we show that Closest

k-Tree Power is NP-complete for k ≥ 2 and maximum node degree four in
the root tree. We only leave open the case of maximum node degree three.

Let us briefly discuss our result. First, the NP-hardness proof of Kearney
and Corneil [8] relies on the NP-completeness of the so-called Fitting Ultra-

metric Trees problem [9]. To show our result, we had to develop a completely
different, more “fine-grained” sort of reduction from the NP-complete Vertex

Cover for Graphs with Maximum Degree Three problem (3-Vertex

Cover for short) [6]. Second, studying tree powers [8] instead of leaf powers [13]
or phylogenetic powers [2], it is impossible to make use of the degree of free-
dom as provided by inner nodes in the latter two cases. Hence, NP-hardness
appears to be harder to show here, somewhat explaining why the problem was
left open and considered more fundamental in [14]. Using our new type of con-
struction for the reduction, we could overcome this difficulty, improving Kearney
and Corneil’s construction [8] which makes use of unbounded degrees.

Due to the lack of space several proofs had to be omitted.

2 Preliminaries

We consider only undirected graphs G = (V, E) with n := |V | and m := |E|.
Edges are denoted as tuples (u, v). The degree of a vertex v is the number of
adjacent vertices. For a graph G = (V, E) and u, v ∈ V , let dG(u, v) denote
the length of the shortest path between u and v in G. With E(G), we denote



Proc. 11th COCOON-05, Vol. 3595 in LNCS, pp. 757-766, Springer, 2005

the edge set of a graph G. We call a graph G′ = (V ′, E′) an induced subgraph

of G = (V, E) if V ′ ⊆ V and E′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E}. For two
sets A and B, A M B denotes the symmetric difference (A \ B) ∪ (B \ A).

Given an unrooted tree T with node set V , the k-tree power of T is a graph,
denoted by T k with T k := (V, E), where E := {(u, v) | u, v ∈ V and dT (u, v) ≤
k}. It can be decided in O(n3) time whether, for specified k, a graph is a k-
tree power or not [8]. The more general graph modification problem that asks
whether a given graph G is close to any k-tree power T k then reads as follows.

Closest k-Tree Power (CTPk): Given a graph G = (V, E) and a nonneg-
ative integer `, is there a tree T such that T k and G differ by at most ` edges,
that is |E(T k) M E(G)| ≤ `? CTPk is NP-complete for k ≥ 2 [8,7]. In this paper
we study a special case of CTPk where the degree of every node in T is bounded
from above by a fixed constant ∆.

Closest k-Tree Power with Maximum Degree ∆ (∆-CTPk): Given
a graph G = (V, E) and a nonnegative integer `, is there a tree T with maximum
node degree ∆ such that T k and G differ by at most ` edges, that is |E(T k) M

E(G)| ≤ `? Clearly, ∆-CTPk is in NP, because tree powers can be recognized
in polynomial time [8]. It remains to show the NP-hardness.

Our reference point for showing NP-completeness of ∆-CTPk is 3-Vertex

Cover: Given a graph G = (V, E) with a maximum vertex degree 3 and a
nonnegative integer `, is there a set C ⊆ V of at most ` vertices such that
each edge from E has at least one endpoint in C? 3-Vertex Cover is NP-
complete [6]. We show NP-completeness of ∆-CTPk for k ≥ 2 and ∆ ≥ 4
by proceeding as follows. First, we study the somewhat simpler case k ≥ 3.
Observe, however, that NP-completeness for some k does not immediately imply
NP-completeness for k + 1. Second, we strengthen our findings by showing NP-
completeness for k = 2 where some additional technical expenditure is needed.

To make the presentation clearer, we will speak of vertices when referring to
a Vertex Cover input instance in the following sections and we will speak of
nodes when referring to a ∆-CTPk instance.

3 ∆-CTPk is NP-complete for k ≥ 3 and ∆ ≥ 4

The central point in the NP-completeness proof is to “simulate” the Vertex

Cover problem by the graph modification problem CTPk. In the course of
this, we will ensure that a Vertex Cover input instance with maximum vertex
degree three translates into an instance of CTPk with a desired tree root with
maximum node degree four. In what follows, we briefly describe the fundamental
ideas behind this reduction of 3-Vertex Cover to 4-CTPk.

Vertex covering means to find a minimum set of vertices that covers all edges.
Equivalently, we may consider the following problem. Subdivide each edge of the
graph into two edges by inserting a new vertex each time. Then, Vertex Cover

can be seen as an edge deletion problem where the task is to break the graph into
n connected components such that each connected component contains exactly
one original vertex. Moreover, one wants to maximize the number of connected



Proc. 11th COCOON-05, Vol. 3595 in LNCS, pp. 757-766, Springer, 2005

components which consist of isolated vertices (or, equivalently, to minimize the
number of connected components that contain at least one edge—the correspond-
ing original vertices form the vertex cover). At first sight, this simply sounds as
a rather complicated reformulation of Vertex Cover. The advantage is that
this formulation is a step closer to our final goal, a graph modification problem
where we modify edges.

So far, observe that in the “new” problem we always have to delete m edges
to achieve n connected components as described above. Thus, one difficulty that
remains to be solved is to interrelate the number of vertices in a vertex cover
and the number of edges modified in 4-CTPk. In addition, we still have to bring
into play the tree root problem as such. To this end, we make a construction
as follows. Firstly, note that we will connect the n connected components de-
scribed above by an additional “backbone structure” such that we finally can
have a connected graph that has a tree root. Secondly, we employ an edge gadget

which translates the edge deletion scenario of the reformulated Vertex Cover

problem into an edge deletion and insertion scenario on the 4-CTPk side. It ba-
sically “expresses” that in vertex covering all edges have to be covered. Thirdly,
we employ a vertex gadget which ensures that we have a one-to-one functional
correspondence between the number of vertices of the 3-Vertex Cover in-
stance and the number of edges to be deleted and inserted in the 4-CTPk
instance. It basically expresses that we want to minimize the size of the vertex
cover. More specifically, the 3-Vertex Cover problem has a solution of size ` iff
the constructed 4-CTPk instance has a solution of size 3m+2`. In fact, the first
term comes from the edge gadgets, and the second term comes from the vertex
gadgets. We illustrate our reduction by focussing on ∆-CTP3.

Construction of the reduction. We now describe the details of the construction
for ∆-CTP3 for ∆ ≥ 4. Given an instance G = (V, E) of 3-Vertex Cover

with V := {v1, . . . , vn}, we construct the graph GCTP = (VCTP, ECTP) as follows.

For every vertex vi ∈ V there is a vertex gadget in GCTP that contains a
vertex node xi

0, a connection stub consisting of eight nodes xi
1, . . . , x

i
8, an edge

stub for every neighbor vj of vi—each edge stub consisting of two nodes yi,j
1

and yi,j
2 —, and edges as shown in Figure 1.

To build the mentioned backbone structure, we add n−1 connection nodes zi

with 1 ≤ i < n to GCTP, and for all 1 ≤ i < n we insert edges between the vertex
gadgets of vi and vi+1 and between the gadgets and zi as shown in Figure 2.

For each edge (vi, vj) ∈ E, we add to GCTP an edge node ei,j and insert

edges between ei,j and the nodes xi
0, yi,j

2 , xj
0, yj,i

2 from the vertex gadgets of vi

and vj . See Figure 3 for an illustration. We call ei,j together with the four edges
incident to it the edge gadget for (vi, vj) ∈ E.

Clearly, GCTP is not a 3-tree power if G contains any edges, because in a
3-tree power T k that contains at least four nodes every node u has at least three
pairwise connected neighbors. To see this, consider the 3-tree root T of T k: If
there is a node v with distance 3 from u in T , then the two vertices between u
and v form a clique in T k together with v and u. Similarly, one can also find
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Fig. 1. The vertex gadget of a vertex vi ∈ V . If vi has only one neighbor vj

in G, the gadget of vi has only one edge stub as shown on the left side. The
illustrations in the middle resp. on the right side show the gadget of vi in the
case that vi has two neighbors vh, vj resp. three neighbors vg, vh, vj .
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Fig. 2. The vertex gadgets of vi, vi+1 ∈ V , and the connection node zi. The
edges inserted between the two gadgets and between the gadgets and zi are
drawn with bold lines.

three pairwise connected neighbors of u in T k if all nodes in T are at distance at
most 2 from u. However, every edge node ei,j in GCTP has four neighbors with
only two edges between them. Figure 4 gives an example for the reduction.

Correctness of the reduction.

Proposition 1. Let G = (V, E) be an instance of 3-Vertex Cover and

let GCTP be the instance of ∆-CTP3 constructed from G as described above.

If C ⊆ V is a vertex cover for G, then GCTP has a solution of size at

most 3 · m + 2 · |C|.

Proof. We prove the proposition by giving a solution of the postulated size
for GCTP. Let C ⊆ V be a vertex cover for G, that is, every edge of E has
at least one endpoint in C. Then we modify GCTP as follows:
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Fig. 3. The edge node ei,j for (vi, vj) ∈ E and the vertex gadgets of vi and vj .
The edges of the edge gadget are drawn with bold lines.

For every vertex vi ∈ C delete the edge (xi
0, x

i
4) and insert the edge (xi

1, x
i
4).

For every edge (vi, vj) ∈ E, at least one of vi and vj , say vi, is in C. Then insert

the edge (ei,j , yi,j
1 ) and delete the edges (ei,j , xj

0) and (ei,j , yj,i
2 ).

This solution has size m · 3 + |C| · 2, since we modify two edges in GCTP for
every vertex in C and three edges for every edge of E.

The resulting graph has a 3-tree root T with maximum vertex degree 4: Every
edge node is connected with exactly one vertex gadget which is modified such
that it has a 3-tree root as shown in Figure 4 for the gadget of v2 (with x2

1 lying
between x2

0 and x2
2 in the tree root). If a vertex gadget is disconnected from all

edge nodes, it has a 3-tree root like the gadgets of v1 and v3 in Figure 4 (with x1
0

lying between x1
1 and x1

2). ut

In order to show the reverse direction, we need the following lemma. We omit
the lengthy proof.

Lemma 1. Given a graph GCTP = (VCTP, ECTP) constructed as described above,

there is an optimal solution Eopt for ∆-CTP3 on GCTP that leads to a graph

Gopt = (VCTP, ECTP M Eopt) with the following two properties:

Edge node property. Each edge node ei,j which is added into GCTP for edge

(vi, vj) ∈ E has only three neighbors in Gopt, and these are either xi
0, y

i,j
1 , yi,j

2

or xj
0, y

j,i
1 , yj,i

2 .

Vertex node property. For each vertex node xi
0 with 1 ≤ i ≤ n, if there is an

edge node ei,j adjacent to xi
0 in Gopt, then Gopt contains edge (xi

1, x
i
4) but not

edge (xi
0, x

i
4); otherwise, Gopt contains (xi

0, x
i
4) but not (xi

1, x
i
4).

Proposition 2. Let G = (V, E) be an instance of 3-Vertex Cover and

let GCTP = (VCTP, ECTP) be the instance of ∆-CTP3 constructed from G.

If Esol is a solution for GCTP, then G has a vertex cover of size at most (|Esol|−
3 · m)/2.
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Fig. 4. An example reduction. Graph G is the 3-Vertex Cover instance,
graph GCTP is the graph constructed from G. There are three vertex gadgets
with vertex nodes x1

0, x
2
0, x

3
0 for the three vertices in G and two edge gadgets

with edge nodes e1,2, e2,3 for the two edges of G. Graph G′ results from GCTP

by deleting five edges and inserting three edges (inserted edges are drawn with
bold lines, deleted edges with dotted lines). Graph G′ is a 3-tree power with T
as its 3-tree root. Note that we need three edge modifications for each edge of G
and two edge modifications for the vertex gadget of v2, which forms a vertex
cover for G.
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Proof. Let Esol ⊆ VCTP × VCTP be an optimal solution for GCTP as described
in Lemma 1. In the resulting graph, every edge node ei,j is connected either
to xi

0, y
i,j
1 , yi,j

2 or to xj
0, y

j,i
1 , yj,i

2 (edge node property of Lemma 1). Hence, for
every edge node ei,j there are three edge modifications in Esol, either the deletion
of (ei,j , xi

0), (ei,j , yi,j
2 ) and the insertion of (ei,j , yj,i

1 ), or the deletion of (ei,j , xj
0),

(ei,j , yj,i
2 ) and the insertion of (ei,j , yi,j

1 ).
As every edge node ei,j is adjacent to exactly one of the vertex nodes xi

0

and xj
0 in the resulting graph,

C := {vi ⊆ V | xi
0 is adjacent to at least one edge node}

is clearly a vertex cover for G. The vertex node property of Lemma 1 implies
that for every vertex node xi

0 that is adjacent to at least one edge node, the
solution Esol contains two edge modifications, namely the deletion of (xi

0, x
i
4)

and the insertion of (xi
1, x

i
4). Hence, there can be at most (|Esol| − 3 ·m)/2 such

vertex nodes, and the size of C, which consists of the corresponding vertices
in V , is bounded from above by (|Esol| − 3 · m)/2. ut

Theorem 1. ∆-CTPk is NP-complete for k = 3 and ∆ ≥ 4.

To generalize to ∆-CTPk for k > 3, we use a straightforward extension
of the construction used for the case k = 3. The gadget for a vertex vi ∈ V
then consists of a vertex node xi

0, 3k − 1 nodes xi
1, . . . , x

i
3k−1 (the connection

stub), and k − 1 nodes yi,j
1 , . . . , yi,j

k−1 for each neighbor vj of vi (the nodes of

the edge stubs). For each edge (vi, vj) ∈ E there is an edge node ei,j with edges

to xi
0, y

i,j
k−1, x

j
0 and yj,i

k−1. All ideas and proofs used for k = 3 also hold for k > 3,
which leads to the following theorem:

Theorem 2. ∆-CTPk is NP-complete for k > 3 and ∆ ≥ 4.

4 ∆-CTP2 is NP-complete for ∆ ≥ 4

In this section we show the NP-completeness of ∆-CTP2 for ∆ ≥ 4. The reduc-
tion is also from 3-Vertex Cover. Compared to the reduction in Section 3,
the only difference lies in the edge gadget. In the construction in Section 3, a
decisive point was that in the edge gadget with edge node ei,j any optimal solu-
tion needs to disconnect exactly one of the two vertex gadgets corresponding to
vertices vi and vj from ei,j . More precisely, the vertex gadget for the covering
vertex (or the vertex gadget for exactly one arbitrary covering vertex if there are
two) stayed connected with ei,j whereas the vertex gadget for the other vertex
became disconnected. In case of CTP2, however, with this construction it is no
longer obvious that an optimal solution needs to disconnect exactly one of the
two vertex gadgets. That is why we introduce a somewhat more complicated
edge gadget, where we basically replace the one edge node ei,j by a clique of five
nodes.

To present the refined construction and demonstrate its correctness, we em-
ploy forbidden subgraphs as shown in Figure 5. No 2-tree power has any of these
as vertex-induced subgraph. A proof of the following lemma can be found in [5].
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G1 G2 G3 G4

Fig. 5. Four forbidden induced subgraphs for 2-tree powers.
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Fig. 6. The edge gadget used in the reduction from 3-Vertex Cover to ∆-CTP2
is a 5-nodes clique consisting of nodes ai,j , bi,j, ci,j , di,j , ei,j . The edges inserted
between the edge gadget and the two vertex gadgets are drawn as bold lines.
Nodes yi,j

1 , yj,i
1 and ai,j , bi,j together with each of ci,j , di,j , ei,j form a forbidden

induced subgraph G1 as shown in Figure 5.

Lemma 2. If a graph G has a 2-tree root, then G does not contain the subgraphs

shown in Figure 5 as induced subgraphs.

We use G1 in Figure 5 to construct the edge gadget. The other three forbidden
induced subgraphs are not directly used in the reduction but will be used in the
proof of Lemma 3.

Since subgraph G1 in Figure 5 is a forbidden induced subgraph for 2-tree
powers, we need at least one edge modification to edit G1 into a graph having a
2-tree root. Based on this observation, the edge gadget for (vi, vj) ∈ E consists
of five nodes which form a clique. Moreover, edges are inserted to connect two
nodes of this edge gadget to the vertex gadgets of vi and vj to form induced
subgraphs G1, see Figure 6 for an illustration. Thus, if the 3-Vertex Cover

instance G contains edges, then GCTP is not a 2-tree power.
With exception of the edge gadget, the rest of the reduction is the same as

the one in Section 3. The proof of the following lemma is very similar to the
proofs of Propositions 1 and 2.

Lemma 3. Given a 3-Vertex Cover instance G = (V, E). Let GCTP denote

the graph constructed as described above. There is a vertex cover of ` vertices

iff GCTP can be transformed into a 2-tree power by 3 ·m+2 ·` edge modifications.
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Theorem 3. ∆-CTP2 is NP-complete for ∆ ≥ 4.

5 Conclusion

Showing NP-completeness of Closest k-Tree Power for k ≥ 2 and maxi-
mum vertex degree four, we basically settled the open question of Tsukiji and
Chen [14] and strengthened results of Kearney and Corneil [8]. Only the case
with maximum vertex degree three is left open. We conjecture that by a further
refinement of our type of reduction NP-completeness can be also shown here.
Moreover, it would be interesting to study the complexities of the graph modi-
fication problems when one only allows either adding or deleting edges. Finally,
investigating the polynomial-time approximability or fixed-parameter tractabil-
ity of the proven NP-complete problems is a task for future research. Fixed-
parameter tractability for closely related leaf root problems is shown in [4,5].
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