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Abstract. We study the NP-completeARGET SET SELECTION(TSS) problem
occurring in social network analysis. Complementing ressor its approximabil-
ity and extending results for its restriction to trees andrted treewidth graphs,
we classify the influence of the parameters “diameter”, stdu edge deletion
number”, “vertex cover number”, and “feedback edge set rerhdf the under-
lying graph on the problem’s complexity, revealing bottctadle and intractable
cases. For instance, even for diameter-two split graphs fEgfins very hard.
TSS can be efficiently solved on graphs with small feedbagle esét number and
also turns out to be fixed-parameter tractable when parairedeby the vertex
cover number, both results contrasting known parametkitzeactability results
for the parameter treewidth. While these tractability hessare relevant for sparse
networks, we also show efficient fixed-parameter algoritfionghe parameter
cluster edge deletion number, yielding tractability fortag dense networks.

1 Introduction

The NP-complete graph problennRGET SET SELECTION (TSS) is defined as fol-
lows. Given an undirected gragh = (V, ), a threshold functiothr : V' — N, and
an integerk > 0, is there a target sef C V for G with |S| < k activating all ver-
tices inV/, that is, for every € V' \ S eventually at leasthr(v) of v’s neighbors are
activated? Note thatctivationis a dynamic process, where initially only the vertices
in S are activated and the remaining vertices may become astig¢p by step during
several rounds (see Sectidn 2 for a formal definition). Rugpbeaking, TSS offers a
simple model to study the spread of influence, infectionnéorimation in social net-
works; Kempe et al[14] referred to it as influence maximaatvith a linear threshold
model. In this work, we extend previous wolHI5,1] by studythe computational com-
plexity of TSS for several special cases.

Domingos and Richardsohl[7] introduced TSS, studying inftbe viewpoint of
viral marketing and solving it heuristically. Next, Kempea. [14] formulated the
problem using a threshold model (as we use it now), showaédHtsompleteness, and
presented a constant-factor approximation algorithm fmeaimization variant. Next,
Chen [%] showed the APX-hardness of a minimization variahtch holds evenin case
of some restricted threshold functions. He also providetheal-time algorithm for
trees. Most recently, Ben-Zwi et all[1] generalized Chee&ult for trees by showing
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that TSS is polynomial-time solvable for graphs of constae¢width; however, the
degree of the polynomial of the running time depends on gwaidth (in other words,
they showed that TSS is in the parameterized complexitg e{&when parameterized
by treewidth). They also proved that there is Wo* (V) time algorithm (v denoting the
treewidth) unless some unexpected complexity-theoretlagse occurs. In particular,
there is no hope for fixed-parameter tractability of TSS whamameterized by just
treewidth.

Motivated by the mostly negative (or impractical) algomitic results of Ben-Zwi et
al. [1], we study further natural parameterizations of T®8.obtain both hardness and
tractability results. Since TSS resembles a dynamic vadathe well-known Dom-
INATING SET problem, it seems unsurprising that the NP-hardness@fiRATING
SET on graphs with diameter tw@_[L5] carries over to TSS. We shumat this is in-
deed the case. In contrast, we also observe that TSS canveel sollinear time for
diameter-one graphs (that is, cliques).

The main part of the paper considers three different parnations of TSS ex-
ploiting different structural graph parameters: First, laek at the “cluster edge dele-
tion number”¢ of the input graph denoting the minimum number of edges whlete
tion transforms the graph into a disjoint union of cliques ®how that TSS can be
solved inO(4¢ - | E| + |V|*) time and provide polynomial problem kernel with respect
to £ and the maximum thresholg,...

Following the spirit of previous work considering graphday and coloring prob-
lems [9L10], we study the parameter “vertex cover numbesf the underlying graph.
This parameter imposes a stronger restriction than trébviddes. Indeed, we prove
that TSS is fixed-parameter tractable when parameterized by addition, for con-
stant thresholds we show a problem kernel consisting(@f) vertices and prove that
there is little hope for a polynomial-size problem kernethie general case.

Finally, as a third and (other than the previous parameéasy-to-compute param-
eter also measuring tree-likeness, we study the feedbaygkst numbef (the mini-
mum number of edges to delete to make a graph acycéd.develop polynomial-time
data reduction rules that yield a linear-size problem Kewith respect to the param-
eter f. Moreover, we show that TSS can be solvedtin- n°(") time, which again
generalizes Chen’s resUlt [5] for trees.

Due to the lack of space, most proofs are deferred to a fuslierrof the paper.

2 Preliminaries, Helpful Facts, and Small Diameter

Basic notation.Let G = (V, E) be a graph and let := |V| andm := |E| through-
out this work. The(open) neighborhoodf a vertexv € V in G is Ng(v) = {u :
{u,v} € E} and thedegreeof v in G is degx(v) := |Ng(v)|. Theclosed neigh-
borhoodof a vertexv € V in G is Ng[v] := Ng(v) U {v}. Moreover, forV’ C V
let Na(V') := Uyeys Na(v) \ V/ and Ng[V'] := U,c Na[v]. Bypassinga ver-
texv € V with N(v) = {u, w} means to delete from G and to insert the edgf:, w}.

! Graphs with small feedback edge set number are “almost'tiesh social networks occur in
the context of e.g. sexually transmitted infectidng [19] amtremism propagatiof[iL2].



Note that, ifu andw are already neighbors i@, thenv must not be bypassed. We some-
times writeG — x as an abbreviation for the graph that results frénby deletingz,
wherex may be a vertex, edge, vertex set, or edge ssplgraphis a graph in which
the vertices can be partitioned into a clique and an indepetngkbt. The class of split
graphs is contained in the class of chordal grabhs [4]. Fertex setS, let A% (S) de-
note the set of vertices @ that areactivated bysS in thei'th round, with A% (S) := S
and AL (S) == AL(S)U{v e V : [N(w) N AL(S)| > thr(v)}. ForS C V, the
uniquely determined positive integewith A7, ' (S) # A% (S) = AL (S) is called
the numberr¢(S) of activation roundsFurthermore, we callls(S) := AgG(S)(S)
the set of vertices that asetivated byS. If A¢(S) = V, thenS is called atarget set
for G. Thus, we arrive at the problenARGET SET SELECTION: given an undirected
graphG = (V, E), a threshold functiothr : V' — N and an integek > 0, is there a
target setS C V for G that contains at mogt vertices?

Thresholds.Apart from arbitrary threshold functions, we consider twpes of differ-
ent threshold functions in this work.
Constant thresholds All vertices have the same threshalgd... Since solving in-
stances of TSS with,,,, = 1 is trivial (just select an arbitrary vertex in each conndcte
component), we assume that all connected components opahgraph contain a ver-
tex with threshold at least two.
Degree-dependent thresholdsThe threshold of a vertex depends omleg(v). In this
context, note that, ifhr(v) = deg(v) for all verticesv, then TSS is identical to ¥Rr-
TEX CoVER [B]. In this work, we particularly consider the “majorityhteshold func-
tion, defined ashr(v) := [deg(v)/2].

In our work, sometimes thresholds of vertices are beingedesad. However, thresh-
olds can never be smaller than zero; further decreasingatibld of zero has no effect.

Parameterized complexityThis is a two-dimensional framework for the analysis of
computational complexity J8,A1.1L7]. One dimension is thguit sizen, and the other
one is theparameter(usually a positive integer). A problem is calléged-parameter
tractable (fpt) with respect to a parametérif it can be solved inf (k) - n®() time,
where f is a computable function only depending AnA core tool in the develop-
ment of fixed-parameter algorithms is polynomial-time poggssing bydata reduc-
tion [2I13]. Here, the goal is to transform a given problem instahwith parametek

in polynomial time into an equivalent instan¢ewith parametek’ < k such that the
size of I’ is upper-bounded by some functignonly depending ork. If this is the
case, we call’ akernelof sizeg(k). Usually, this is achieved by applying data reduc-
tion rules. We call a data reduction rufe correctif the new instancd’ that results
from applyingR to I is a yes-instance if and only if is a yes-instance. An instance
is calledreducedwith respect to some data reduction rule if this rule has mthé
effect when applied to the instance. The whole processlisdatrnelization Downey
and Fellows|[[B] developed a parameterized theory of contipui@ complexity to show
fixed-parameter intractability by meanspdrameterized reductioné parameterized
reduction from a parameterized probldmto another parameterized probleg? is a
function that, given an instanée, k), computes irf (k)-n°() time an instancéz’, k')
(with " only depending ork) such that(z, k) is a yes-instance oP if and only



if («/,k) is a yes-instance aP’. The basic complexity class for fixed-parameter in-
tractability is calledi’’[1] and there is good reason to believe tHafl]-hard problems
are not fpt [ IIL.17]. Moreover, there is a whole hierarchglassesiV[t], t > 1,
where, intuitively, problems become harder with growing

Basic Facts.Based on the following observation, we present a data reguatle to
deal with vertices whose thresholds exceed their degrees.

Observation 1 LetG = (V, E) be agraphandlet € V. If thr(v) > deg(v), thenv s
contained in all target sets faf. If thr(v) = 0, thenv is not contained in any optimal
target set forG.

ReductionRule 1. LetG = (V, E) andv € V. If thr(v) > deg(v), then delete,
decrease the threshold of all its neighbors by one and dserdeay one. Ifthr(v) = 0,
then delete and reduce the thresholds of all its neighbors by one.

Considering that changes propagate over each edge at nuastibis not hard to
see that a graph can be reduced with respelct To ReductionTRol®(n + m) time.
with Reducfion Rulell, we can define the graph that remaies aft activation process.

Definition 1. Let(G = (V, E), thr, k) be aninstance of SS let.S C V, and letthrg :

V — Nwith thrg(v) := oo forall v € S andthrg(v) := thr(v) forall v € V'\ S.
Then we call the instande’, thr’, k') that results from exhaustively applying Reduc-
tion Rule 1 to(G, thrg, k) thereduced instancef (G, thr, &) with respect toS.

Observation 2 Let G = (V, F) be a graph reduced with respect[fo Reductfion Rile 1.
Then there is an optimal target set f@rnot containing vertices with threshold one.

Small-Diameter GraphsSince many real-world (social) networks have small diamete
it is natural to investigate the influence of the diameterlm domplexity of TSS. If
the diameter of a given graph is one (that is(7 is a clique), then a simple exchange
argument allows us to observe that there is a minimum-sigetaet forG that contains
the vertices with the highest thresholds. With-Observallpwe can sort the vertices
by their thresholds in linear time using bucket sort and eosmrted, we can determine
in linear time whethek vertices suffice to activate the clique. For graphs with @itam
at least two, the close relationship toORINATING SET suggests that TSS is NP-
hard [15]. We confirm this intuition by providing hardnessulkts for several variants
of TSS on graphs with constant diameter. Our hardness posefseductions from the
W2]-hard HTTING SET problem.

Theorem 1. TARGET SET SELECTION is NP-hard and W[2]-hard for the parameter
target set sizé;, even on

1. split graphs with diameter two,
2. bipartite graphs with diameter four and constant thrdghwo, and
3. bipartite graphs with diameter four and majority thre e



3 Cluster Edge Deletion Number

Social networks may consist of almost cluster graphs. Thigvates to study a param-
eterization measuring the distance from the input graphgiaph where all connected
components are cliques, a so-called “cluster graph” [2@F Such distance measure is
the size¢ of a minimum cluster edge deletion set, that is, a smallésifsdges whose
removal results in a cluster graph.

For arbitrary thresholds, we show that TSS is fixed-parantetetable with respect
to & by providing an algorithm running i@ (4% -m+n?) time. For restricted thresholds,
we present a linear-time computable kernel whose numbeentices grows linearly
with ¢ when the thresholds are bounded by some constant. In factaw®ound the
number of vertices in this kernel ¢ (tmax + 1), Wheret,,., is the maximum thresh-
old occurring in the input. Our elaborations highly depemdtloe notion of “critical
cliques™ a cliqueK in a graph is aritical cliqueif all its vertices have the same closed
neighborhood ands is maximal with respect to this property. Computing allicet
cliques of a graph can be done in linear tifel [16].

Arbitrary Thresholds.To present a solving strategy for TSS in case of arbitrargsi
olds, we first introduce a data reduction rule that shrinlguel-like substructures. The
key to showing fixed-parameter tractability is the obseovathat, in a graph reduced
with respect to this data reduction rule, there is an optitaaet set consisting only
of vertices that are incident to tlieedges of a given optimal cluster edge deletion set.
Since we can compute an optimal target set for a clique iratitiene (se€Seciiod 2),
we assume that none of the connected components of the irgplt & a clique.

Now, we describe the data reduction rule that shrinks cligkee substructures.
Consider a critical cliqués in the input graph and its neighborév (K) and note
that N (K') separated( from the rest oiG. If activating all vertices inNg (K) is not
enough to activate all vertices &f, then every target set ¢f has to contain some ver-
tices of K. Without loss of generality, we can assume those vertichate the highest
threshold among all vertices &f. These considerations lead to the following.

Reduction Rule 2. Let] := (G, thr, k) be an instance of SSand letK be a critical
clique inG. Moreover, let(G’, thr’, k') be the reduced instance (& [Ng[K]], thr, k)

with respect taV(K) and letS denote an optimal target set fo6’, thr’) (see Defi-
nition 1). Then, reducé with respect taS.

HereinG’ is a clique and, hence, an optimal target$éor (G’, thr’) can be computed
in linear time (seE_Seciian 2).

Having reduced the input with respectio Reducfion Riille 2¢clain that we can
limit our considerations to a small subset of vertices ofrdmaining graph. To see this,
consider a cluster edge deletion ##tof a graphG and letV (E’) denote the vertices
incident to the edges iR’ (we call the vertices iV (E’) affectedby E’).

Lemma 1. Let/ := (G, thr k) denote a yes-instance reduced with respect to Reduc-
tion Rule 2 and letr’ denote an optimal cluster edge deletion setGbfThen, there
exists an optimal target sét for I with S C V(E’).



By[Cemmadl, an optimal target set can be found by systemitichaécking every
subset of the at mo8&t vertices affected by an optimal cluster edge deletionsatlihg
directly to the following theorem.

Theorem 2. TARGET SET SELECTION can be solved i) (45 - m + n?) time, wheret
denotes the cluster edge deletion numbef of

Restricted Thresholdsln the following, we present a data reduction shrinking ¢arg
critical cliques until their size can be bounded by the maximthreshold,,... Thereby,
we obtain a problem kernel witt€ (¢, + 1) vertices, which is linear ig if the thresh-
olds of the input are bounded by a constant.

Consider a critical cliqués” containing at least,,.. + 1 vertices. Informally speak-
ing, it is sufficient to keep the,,., vertices of K with the smallest thresholds, since if
these are activated, then all vertices\Np [ K| are activated.

Reduction Rule 3. Let (G, thr, k) be an instance oT SSand lett,,., denote the max-
imum threshold of this instance. Furthermore, Igtbe a critical clique inG with
|K| > tmax and letiK " denote the K| — t,,., Vertices with highest thresholds Af.
Then, delete the vertices ii"¢" from G.

In a reduced instance, the number of critical cliques is tppended by2¢ and
each critical clique contains at mast., vertices. Thus, the number of vertices in a
reduced graph is at mo&§ (tmax + 1).

Theorem 3. TARGET SET SELECTION admits a problem kernel wWitB¢ (¢ax + 1)
vertices. The kernelization runs finear time.

4 \ertex Cover Number

The vertex cover number of a graph denotes the cardinality of an optimal vertex
cover of G (that is, a minimum-size vertex set such that every edge hksast one
endpoint in this set). Since deleting all vertices in a vekever results in a graph
without edges, a vertex cover of a graphis a feedback vertex set far as well.
Moreover, it is a well-known fact that the feedback vertexsanber is an upper bound
on the treewidth. Hence, the vertex cover number is an uppandon the treewidth,
too. Ben-Zwi et al.[[lL] have shown that TSS is W[1]-hard fog tombined parameter
treewidth and target set size. Indeed, the given reductiows that TSS is W[1]-hard
even for the combined parameter feedback vertex set numbdaeget set size. These
hardness results motivate the study of TSS parameterizpdrayneters larger than the
feedback vertex set number as, for example, the vertex cowaber [, 1D].

Arbitrary thresholds.If the input graph’ is reduced with respect [0 Reducfion Rule 1,
then the threshold of each vertex is bounded by its degrees,Tihcan be activated
by activating all its neighbors. This implies that a vertexer of G is also a target set
for G and, hence, the target set sizes at most the vertex cover numbeof G. In this
sense, the vertex cover numbeis a “weaker” parameter than the target set gizad
allows for fixed-parameter algorithms with respect to paetem.



Let G = (V, E) denote a graph and It denote a vertex cover @¥. Then,I :=
V\Z is anindependent set. The key to showing fixed-parametgabiéity of TSS with
respect tor is to bound the number of vertices inthat are candidates for an optimal
target set. To this end, vertices Inwith an identical neighborhood are of particular
interest. In this section; denotes the vertex cover number@f

Definition 2. Two pairwise non-adjacent vertices with the same open beidgtood
are calledtwins. A setV’ of vertices is calledritical independent séteach two distinct
vertices froml/” are twins andl/’ is maximal with respect to this property.

The vertices ofl are contained in at mo&t#! critical independent sets (one for
each subset aof). The next observation allows us to focus on a restrictedbearrof
vertices for each critical independent set when lookingafooptimal target set.

Observation 3 LetG = (V, E') denote a graph and let, w € V denote two twins aff
with thr(u) > thr(w). In addition, letS denote a target set withh € S andu ¢ S.
Then,S" := S\ {w} U {u} is a target set foG.

In the following, we assume that the vertices of the inpufpgrare ordered de-
creasingly by their thresholds. By Observafidn 3, we caaatly conclude that there
is an optimal target set that contains for each critical peaelent sef only vertices
from the set of thé: < 7 vertices with highest threshold éf Moreover, we can bound
the number of critical independent sets by a function ofeading to fixed-parameter
tractability of TSS with respect to.

Theorem 4. TARGET SET SELECTION can be solved iD(2(2 1) 7.m) time, wherer
denotes the vertex cover numbeicaf

Proof. (Sketch) Let(G = (V, E), thr, k) denote the input instance for TSS. In the
following, we assume thd¥ is reduced with respect [g Reduciion Rulle 1.

The algorithm works as follows. In a first phase, it computesoptimal vertex
coverZ of G (this can be done iW(1.3™ 4+ n) time [I4]). If £ > |Z|, then the algo-
rithm returnsZ. In a second phase it computes aGatf at most(2” + 1) - 7 vertices
for which there exists an optimal target $etvith S C C'. Then, in a third phase, the al-
gorithm determines an optimal target set by systematichlgcking every subset af.
The setC' in the second phase is computed as follows: For each critidapendent
set,C' contains the: vertices with highest threshold (for a critical indepentdsst of
cardinality at mosk all its vertices are ir”). In the third phase, the algorithm system-
atically checks every sizk-subset ofC for being a target set. If no such target set is
found, then it rejects the instance.

Next, we show that the presented algorithm finds a targef s&t@at most for G,
if it exists. For the correctness of the first phase note thiate GG is reduced with
respect t¢_ Reduciion Ruld 1, any vertex cover-ois a target set fotz, as well. For
the correctness of the other phases note that, by itenatiygllyingfObservationl 3, we
can directly conclude that there exists an optimal targetseith S C C. Thus, the
correctness of the algorithm follows by the fact that it dteeevery sizek subset ofC.

We omit the running time analysis. a




Restricted thresholdsNext, we show that TSS admits a problem kernel vit2™ -
tmax) Vertices. Moreover, we show that TSS parameterized by thexeover number
presumably does not admit a polynomial problem kernel esemfjority thresholds.

First, we present a problem kernel for the combined paramvettex cover num-
ber 7 and maximum thresholéd,... To bound the number of vertices in a reduced
instance, we need (besides Reducfion Rlile 1) one furtheethrat reduces large critical
independent sets. For every critical independent set efaiteast,, .. + 1, this rule
removes all but the,,.. vertices with “smallest thresholds”.

Reduction Rule 4. LetgGi thr! kZ denote al SSinstance reduced with respect to Re-

duction Rule 1 and lef denote a critical independent set @fwith |I| > tyax + 1.
Then delete thef | — (tmax + 1) highest-threshold vertices &f

Theorem 5. TARGET SET SELECTION admits a problem kernel with at moSy(27 -
tmax) Vertices, wherée,, ., denotes the maximum threshold andlenotes the vertex
cover number ofi. The kernelization runs i®(n - (n +m)) time.

Dom et al.[65] showed that HTING SET does not admit a problem kernel of siz& |+
k)M unless an unexpected complexity-theoretic collapse scelarek’ denotes the
solution size andU | denotes the size of the universe. Bodlaender eflal. [3]dnired

a refined concept of parameterized reduction (called pohyabtime and parameter
transformation) that allows to transfer such hardnesslteetm new problems. By a
reduction from HTTING SET to TSS, we can show that, under reasonable complexity-
theoretic assumptions, TSS does not admit a problem kefsee(r + k)0,

Theorem 6. TARGET SET SELECTION on bipartite graphs with majority thresholds
does not admit a problem kernel of size+ £)°() unless coNRZ NP/poly, wherek
denotes the target set size andenotes the vertex cover numbeicaf

5 Feedback Edge Set Number

Another structural parameter of a graghthat is lower bounded by its treewidth is
the sizef of a smallest feedback edge set@fthat is, a smallest set of edges@f
whose deletion make§ acyclic. Recall fron[Seciion] 4 that TSSTiE|[1]-hard with
respect to the parameter feedback vertex set. Some rell-samial networks are tree-
like (for example sexual networks19], see also [5]) or sdate (se€[12]). This often
corresponds to small feedback edge sets and motivates gim@aimg TSS withyf. Like
the vertex cover numbert, the feedback edge set numbfds a “weaker” parameter than
treewidth, raising hope for faster algorithms for TSS inesawheref is small. A clear
advantage over treewidth (and tree decompositions) isahatptimal feedback edge
set can be determined efficiently by computing a spannirg tre

First, we show a problem kernel of sizK f) for TSS based on two data reduction
rules. Second, we present an algorithm that solves TS% im©(") time.



Kernelization for TSSIn this paragraph, we present two data reduction rules f& TS
that can be applied exhaustively in linear time and leaveoblpm kernel of siz&( f).
removes verticeswith thr(v) = deg(v) = 1 from G. Note that
[Reduction Rulell (sde_Seciioh 2) removes all other degree+enices fronG.

Reduction Rule 5. Let (G = (V, E), thr, k) be an instance folTSS reduced with
respect t Reducfion Rulé 1 and teke V' with thr(v) = deg(v) = 1. Then delete
fromG.

The correctness ¢ Reducfion Rule 5 follows immediatelynffobservafion]? and
one easily verifies thaf Reduciion Rule 5 can be exhaustaghjied in linear time. In
a graph reduced with respect to Reduction Rles Ihnd 5, wbaamd the number of
vertices with degree at least three .

Lemma 2. A graph with feedback edge set numlfeeduced with respect to Reduction
Ruled1 anfl5 has at mof vertices with degree at least three.

Wwith[Cemma? we bound the number of vertices with degree at lbaee in graphs
that are reduced with respect to Reduction Rlles 1[nd 5e $ihese graphs do not
contain degree-one vertices, it remains to bound the degmegertices.

Reduction Rule 6. Let (G, thr, k) be an instance fol SSreduced with respect to Re-
duction Rule 1 and lefu, v, w) be a path inG with deg(u) = deg(v) = deg(w) = 2
wherew and w are neither neighbors nor twins. If there is a vertexe {u,v,w}
with thr(x) = 1, then bypass, otherwise, bypass andw and decreasé by one.

Theorem 7. TARGET SET SELECTION admits a problem kernel of siz&( f), wheref
denotes the feedback edge set number. The kernelizatisnirrlinear time.

Proof. Let(G, thr, k) be aninstance of TSS reduced with respect to Reduction Bules
B, and®. Furthermore, Iéf denote an optimal feedback edge set@brThus, T :=
G — F is a forest. Consider the grafiff that results from bypassing all verticesTn
having degree two in botfy¥ andT'. Itis easy to see that all verticesiit have the same
degree inl™ as they have iff". Hence, each vertexwith degree two iril™* is incident
to an edge of” in G because otherwise it would have been bypassed. Furtherezmfe
leaf inT* not incident to an edge df is also a leaf in, but sinceG is reduced with
respect to Reduction RulEk 1 ddd 5, each ledf'ofs incident to an edge of. Thus,
the number of vertices df* with degree at most two is bounded y. Furthermore,
by[CeEmma®, the number of vertices'Bf with degree at least three is boundedyy
Thus, the overall number of vertices T is at mostd f. Finally, sinceG is reduced
with respect td_Reducfion Rulé 6, for each edgev} of T*, there are at most two
vertices between. andv in 7. Hence, the overall number of vertices Bfcan be
bounded byl2 f and sincel” is a forest, so can the overall number of edge$ oBy
construction ofl’, we can bound the overall number of verticestbby 12f and the
overall number of edges @f by 13 f.

It can be shown that any graph can be reduced with respectiodien Rule§HL15,
and® in linear time. O




FPT algorithm for TSS[TheoremV already implies that TSS is fixed-parameter tracta
ble by applying a brute-force search to the sizef) problem kernel. Here, we develop
a fixed-parameter algorithm with much better efficiency.

Our algorithm computes a solutighfor an input instancéG, thr, k) for TSS if
there is one. The algorithm runs in two phases. In Phase 1rarech on degree-two
vertices that are in a cycle @f. In Phase 2, we alternatingly try solutions for a cyclic
subgraph and apply previous data reduction rules.

In the algorithm, we use the notion of branching rules. Hare,analyze an in-
stancel and replace it with a sef of new instances. The creation of new instances
is defined in branching rules, which we catirrectif the original instancd is a yes-
instance if and only if there is a yes-instanceZinln analogy to data reduction rules,
instances that are not subject to a specific branchingRudee callededucedwith re-
spect toR. By considering each application of a branching rule as texevith parent
and childreriZ, we can define aearch tredor each input instance.

In the following, we denote the set of all vertices of a gréapbeing part of cycles
by Vc(G). LetC be some two-edge connected componeiit abntaining at least three
vertices, thatis(' is a non-singleton connected component that remains ctethafter
removing all bridges fronds.

Phase 1.In the first phase of our algorithm we branch on verticeldiz) with degree
two and threshold two. To this end, we present a branchirmgwith branching number
two that decreases the feedback edge set nurfilierevery application. This lets us
bound the search tree size d¥.

Branching Rule 1. Let := (G = (V, E), thr, k) be an instance oTSSand letv €
V N Ve(G) andthr(v) = deg(v) = 2. Then, create the instance bfthat is reduced
with respect to{ v} and create the instandgs — v, thr, k).

It is easy to see thqt Branching Rule 1 branches into at mastcages. After each
application of Branching Rulg 1, our algorithm exhausthagplies Reduction Rulé&$ 1

and® to the created instances. If nong of Branching Hule Raddction RuleEl1 arid 5
applies to any of the created instances, then Phase 2 ofgbethim begins.

Phase 2. At the beginning of the second phase, no input instance igsuto Bran-

ching Rule 1 or Reduction Rulgk 1 ddd 5. In Phase 2, we branehrtines with degree
at least three that are contained in cycles, followed by th@ieation of Reduction
Rulesl and5. This process is iterated for all input instanagil all input instances
can trivially be determined to be yes- or no-instances.

Let I; := (Gy, thry, k1) denote an input instance for Phase 2. For a two-edge con-
nected componer® of G, we denote the set of vertices & (C) that have degree
two by V2(C). Note that, since7; is reduced with respect {0 Reducfion Rule 1 and
[Branching Rule L, all vertices il (C') have threshold one. Hence, by Observatibn 2,
there is an optimal solution faoF; that does not contain vertices bf. Note that, if
each two-edge connected componen&gfis contracted into a single vertex, then the
remaining graph is a forest. In the following, we call thisest thecomponent forest;
of G1. Since@, is reduced with respect to Reduction RUles 1 @Bnd 5, everyoleaf
corresponds to a contracted non-singleton two-edge ctgsheomponent ofs.




Branching Rule 2. Let I; := (G, thry, k1) be an instance off SSreduced with re-
spect to Reduction RulEk 1 ddd 5 andllebe the component forest@f,. Furthermore,
let C' denote a two-edge connected componefitoforresponding to a leaf ifiy, letv
be the only vertex iiNg, (V(C)), and letw be the only vertex iV (v) NV (C). Then,
for eachV’ C V(C) \ V2, create a new instance by modifyifigin the following way.
If V' is a target set forC, then create the instance &f that is reduced with respect
toV’. Else, ifV’’ is a target set foC with thr; (w) decreased by one, then del&éC)
from G; and decreasé; by |V’|. Otherwise, reduce to a trivial no-instance.

Note that one application pf Branching Rule 2 can be pictasebranching into the
casew € S andv ¢ S for each vertex € V(G1) \ Vo. ByCeEmma®,|Ve| < 2f1,
with f; denoting the feedback edge set numbetof Since each application of Bran-
ching Rule 1 decreases the feedback edge set number of titedoptinuing the search
tree of Phase 1 with Branching RulE 2 leads to a search treepthdt mos® f and
each node in the search tree has at most two children. Theréfie overall search tree
size is at most/. After the exhaustive application pf Branching Ruje 2 andiRgion
Ruled1 and5, we can decide for each remaining instance whi¢tk a yes-instance
of TSS or not. If some instance is a yes-instance, then tiggnatiinstance is also a
yes-instance of TSS. Otherwiskis a no-instance of TSS.

Theorem 8. TARGET SET SELECTION can be solved in/ - n©(®) time, wheref de-
notes the feedback edge set number.

6 Conclusion and Open Problems

Following the spirit of multivariate algorithmic5TL8], vatudied natural parameteriza-
tions of TSS. We confirmed the intuition deriving from the dagss of MINATING
SET that TSS remains hard for the parameter diameter. Howenrethé structural pa-
rameters “cluster edge deletion number”, “vertex cover berfy and “feedback edge
set number” we established tractability results by shoviixed-parameter algorithms
and kernelizations. Since for several applications thampater “number of activation
rounds” appears to be relevant and should be small, thisvates to investigate the
influence of this parameter on the complexity of TSS. As ihsuout, however, TSS
is already NP-hard for only two rounds; similarly to dianrethis calls for the com-
bination with other parameters. Finally, note that we feclien activatingall graph
vertices; it is natural to extend our studies to cases whénaospecified fraction of the
graph vertices shall be activated at minimum cost.
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