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Abstract. We study the NP-complete TARGET SET SELECTION(TSS) problem
occurring in social network analysis. Complementing results on its approximabil-
ity and extending results for its restriction to trees and bounded treewidth graphs,
we classify the influence of the parameters “diameter”, “cluster edge deletion
number”, “vertex cover number”, and “feedback edge set number” of the under-
lying graph on the problem’s complexity, revealing both tractable and intractable
cases. For instance, even for diameter-two split graphs TSSremains very hard.
TSS can be efficiently solved on graphs with small feedback edge set number and
also turns out to be fixed-parameter tractable when parameterized by the vertex
cover number, both results contrasting known parameterized intractability results
for the parameter treewidth. While these tractability results are relevant for sparse
networks, we also show efficient fixed-parameter algorithmsfor the parameter
cluster edge deletion number, yielding tractability for certain dense networks.

1 Introduction

The NP-complete graph problem TARGET SET SELECTION (TSS) is defined as fol-
lows. Given an undirected graphG = (V, E), a threshold functionthr : V → N, and
an integerk ≥ 0, is there a target setS ⊆ V for G with |S| ≤ k activating all ver-
tices inV , that is, for everyv ∈ V \ S eventually at leastthr(v) of v’s neighbors are
activated? Note thatactivation is a dynamic process, where initially only the vertices
in S are activated and the remaining vertices may become activated step by step during
several rounds (see Section 2 for a formal definition). Roughly speaking, TSS offers a
simple model to study the spread of influence, infection, or information in social net-
works; Kempe et al. [14] referred to it as influence maximization with a linear threshold
model. In this work, we extend previous work [5,1] by studying the computational com-
plexity of TSS for several special cases.

Domingos and Richardson [7] introduced TSS, studying it from the viewpoint of
viral marketing and solving it heuristically. Next, Kempe et al. [14] formulated the
problem using a threshold model (as we use it now), showed itsNP-completeness, and
presented a constant-factor approximation algorithm for amaximization variant. Next,
Chen [5] showed the APX-hardness of a minimization variant,which holds even in case
of some restricted threshold functions. He also provided a linear-time algorithm for
trees. Most recently, Ben-Zwi et al. [1] generalized Chen’sresult for trees by showing
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that TSS is polynomial-time solvable for graphs of constanttreewidth; however, the
degree of the polynomial of the running time depends on the treewidth (in other words,
they showed that TSS is in the parameterized complexity class XP when parameterized
by treewidth). They also proved that there is no|V |o(

√
w) time algorithm (w denoting the

treewidth) unless some unexpected complexity-theoretic collapse occurs. In particular,
there is no hope for fixed-parameter tractability of TSS whenparameterized by just
treewidth.

Motivated by the mostly negative (or impractical) algorithmic results of Ben-Zwi et
al. [1], we study further natural parameterizations of TSS.We obtain both hardness and
tractability results. Since TSS resembles a dynamic variant of the well-known DOM-
INATING SET problem, it seems unsurprising that the NP-hardness of DOMINATING

SET on graphs with diameter two [15] carries over to TSS. We show that this is in-
deed the case. In contrast, we also observe that TSS can be solved in linear time for
diameter-one graphs (that is, cliques).

The main part of the paper considers three different parameterizations of TSS ex-
ploiting different structural graph parameters: First, welook at the “cluster edge dele-
tion number”ξ of the input graph denoting the minimum number of edges whosedele-
tion transforms the graph into a disjoint union of cliques. We show that TSS can be
solved inO(4ξ · |E| + |V |

3
) time and provide polynomial problem kernel with respect

to ξ and the maximum thresholdtmax.
Following the spirit of previous work considering graph layout and coloring prob-

lems [9,10], we study the parameter “vertex cover number”τ of the underlying graph.
This parameter imposes a stronger restriction than treewidth does. Indeed, we prove
that TSS is fixed-parameter tractable when parameterized byτ . In addition, for con-
stant thresholds we show a problem kernel consisting ofO(2τ ) vertices and prove that
there is little hope for a polynomial-size problem kernel inthe general case.

Finally, as a third and (other than the previous parameters)easy-to-compute param-
eter also measuring tree-likeness, we study the feedback edge set numberf (the mini-
mum number of edges to delete to make a graph acyclic).1 We develop polynomial-time
data reduction rules that yield a linear-size problem kernel with respect to the param-
eterf . Moreover, we show that TSS can be solved in4f · nO(1) time, which again
generalizes Chen’s result [5] for trees.

Due to the lack of space, most proofs are deferred to a full version of the paper.

2 Preliminaries, Helpful Facts, and Small Diameter

Basic notation.Let G = (V, E) be a graph and letn := |V | andm := |E| through-
out this work. The(open) neighborhoodof a vertexv ∈ V in G is NG(v) := {u :
{u, v} ∈ E} and thedegreeof v in G is degG(v) := |NG(v)|. The closed neigh-
borhoodof a vertexv ∈ V in G is NG[v] := NG(v) ∪ {v}. Moreover, forV ′ ⊆ V
let NG(V ′) :=

⋃
v∈V ′ NG(v) \ V ′ andNG[V ′] :=

⋃
v∈V ′ NG[v]. Bypassinga ver-

texv ∈ V with N(v) = {u, w} means to deletev from G and to insert the edge{u, w}.

1 Graphs with small feedback edge set number are “almost trees”; such social networks occur in
the context of e.g. sexually transmitted infections [19] and extremism propagation [12].



Note that, ifu andw are already neighbors inG, thenv must not be bypassed. We some-
times writeG − x as an abbreviation for the graph that results fromG by deletingx,
wherex may be a vertex, edge, vertex set, or edge set. Asplit graphis a graph in which
the vertices can be partitioned into a clique and an independent set. The class of split
graphs is contained in the class of chordal graphs [4]. For a vertex setS, letAi

G(S) de-
note the set of vertices ofG that areactivated byS in thei’th round, with A0

G(S) := S

andAj+1
G (S) := Aj

G(S) ∪ {v ∈ V : |N(v) ∩ Aj
G(S)| ≥ thr(v)}. For S ⊆ V , the

uniquely determined positive integerr with Ar−1
G (S) 6= Ar

G(S) = Ar+1
G (S) is called

the numberrG(S) of activation rounds. Furthermore, we callAG(S) := A
rG(S)
G (S)

the set of vertices that areactivated byS. If AG(S) = V , thenS is called atarget set
for G. Thus, we arrive at the problem TARGET SET SELECTION: given an undirected
graphG = (V, E), a threshold functionthr : V → N and an integerk ≥ 0, is there a
target setS ⊆ V for G that contains at mostk vertices?

Thresholds.Apart from arbitrary threshold functions, we consider two types of differ-
ent threshold functions in this work.
Constant thresholds: All vertices have the same thresholdtmax. Since solving in-
stances of TSS withtmax = 1 is trivial (just select an arbitrary vertex in each connected
component), we assume that all connected components of an input graph contain a ver-
tex with threshold at least two.
Degree-dependent thresholds: The threshold of a vertexv depends ondeg(v). In this
context, note that, ifthr(v) = deg(v) for all verticesv, then TSS is identical to VER-
TEX COVER [5]. In this work, we particularly consider the “majority” threshold func-
tion, defined asthr(v) := ⌈deg(v)/2⌉.

In our work, sometimes thresholds of vertices are being decreased. However, thresh-
olds can never be smaller than zero; further decreasing a threshold of zero has no effect.

Parameterized complexity.This is a two-dimensional framework for the analysis of
computational complexity [8,11,17]. One dimension is the input sizen, and the other
one is theparameter(usually a positive integer). A problem is calledfixed-parameter
tractable(fpt) with respect to a parameterk if it can be solved inf(k) · nO(1) time,
wheref is a computable function only depending onk. A core tool in the develop-
ment of fixed-parameter algorithms is polynomial-time preprocessing bydata reduc-
tion [2,13]. Here, the goal is to transform a given problem instanceI with parameterk
in polynomial time into an equivalent instanceI ′ with parameterk′ ≤ k such that the
size of I ′ is upper-bounded by some functiong only depending onk. If this is the
case, we callI ′ a kernelof sizeg(k). Usually, this is achieved by applying data reduc-
tion rules. We call a data reduction ruleR correct if the new instanceI ′ that results
from applyingR to I is a yes-instance if and only ifI is a yes-instance. An instance
is calledreducedwith respect to some data reduction rule if this rule has no further
effect when applied to the instance. The whole process is calledkernelization. Downey
and Fellows [8] developed a parameterized theory of computational complexity to show
fixed-parameter intractability by means ofparameterized reductions. A parameterized
reduction from a parameterized problemP to another parameterized problemP ′ is a
function that, given an instance(x, k), computes inf(k)·nO(1) time an instance(x′, k′)
(with k′ only depending onk) such that(x, k) is a yes-instance ofP if and only



if (x′, k′) is a yes-instance ofP ′. The basic complexity class for fixed-parameter in-
tractability is calledW [1] and there is good reason to believe thatW [1]-hard problems
are not fpt [8,11,17]. Moreover, there is a whole hierarchy of classesW [t], t ≥ 1,
where, intuitively, problems become harder with growingt.

Basic Facts.Based on the following observation, we present a data reduction rule to
deal with vertices whose thresholds exceed their degrees.

Observation 1 LetG = (V, E) be a graph and letv ∈ V . If thr(v) > deg(v), thenv is
contained in all target sets forG. If thr(v) = 0, thenv is not contained in any optimal
target set forG.

Reduction Rule 1. Let G = (V, E) and v ∈ V . If thr(v) > deg(v), then deletev,
decrease the threshold of all its neighbors by one and decreasek by one. Ifthr(v) = 0,
then deletev and reduce the thresholds of all its neighbors by one.

Considering that changes propagate over each edge at most once, it is not hard to
see that a graph can be reduced with respect to Reduction Rule1 in O(n + m) time.
With Reduction Rule 1, we can define the graph that remains after an activation process.

Definition 1. Let(G = (V, E), thr, k) be an instance ofTSS, letS ⊆ V , and letthrS :
V → N with thrS(v) := ∞ for all v ∈ S andthrS(v) := thr(v) for all v ∈ V \ S.
Then we call the instance(G′, thr′, k′) that results from exhaustively applying Reduc-
tion Rule 1 to(G, thrS , k) thereduced instanceof (G, thr, k) with respect toS.

Observation 2 Let G = (V, E) be a graph reduced with respect to Reduction Rule 1.
Then there is an optimal target set forG not containing vertices with threshold one.

Small-Diameter Graphs.Since many real-world (social) networks have small diameter,
it is natural to investigate the influence of the diameter on the complexity of TSS. If
the diameter of a given graphG is one (that is,G is a clique), then a simple exchange
argument allows us to observe that there is a minimum-size target set forG that contains
the vertices with the highest thresholds. With Observation1, we can sort the vertices
by their thresholds in linear time using bucket sort and, once sorted, we can determine
in linear time whetherk vertices suffice to activate the clique. For graphs with diameter
at least two, the close relationship to DOMINATING SET suggests that TSS is NP-
hard [15]. We confirm this intuition by providing hardness results for several variants
of TSS on graphs with constant diameter. Our hardness proofsuse reductions from the
W [2]-hard HITTING SET problem.

Theorem 1. TARGET SET SELECTION is NP-hard and W[2]-hard for the parameter
target set sizek, even on

1. split graphs with diameter two,
2. bipartite graphs with diameter four and constant threshold two, and
3. bipartite graphs with diameter four and majority thresholds.



3 Cluster Edge Deletion Number

Social networks may consist of almost cluster graphs. This motivates to study a param-
eterization measuring the distance from the input graph to agraph where all connected
components are cliques, a so-called “cluster graph” [20]. One such distance measure is
the sizeξ of a minimum cluster edge deletion set, that is, a smallest set of edges whose
removal results in a cluster graph.

For arbitrary thresholds, we show that TSS is fixed-parameter tractable with respect
to ξ by providing an algorithm running inO(4ξ ·m+n3) time. For restricted thresholds,
we present a linear-time computable kernel whose number of vertices grows linearly
with ξ when the thresholds are bounded by some constant. In fact, wecan bound the
number of vertices in this kernel by2ξ(tmax + 1), wheretmax is the maximum thresh-
old occurring in the input. Our elaborations highly depend on the notion of “critical
cliques”: a cliqueK in a graph is acritical clique if all its vertices have the same closed
neighborhood andK is maximal with respect to this property. Computing all critical
cliques of a graph can be done in linear time [16].

Arbitrary Thresholds.To present a solving strategy for TSS in case of arbitrary thresh-
olds, we first introduce a data reduction rule that shrinks clique-like substructures. The
key to showing fixed-parameter tractability is the observation that, in a graph reduced
with respect to this data reduction rule, there is an optimaltarget set consisting only
of vertices that are incident to theξ edges of a given optimal cluster edge deletion set.
Since we can compute an optimal target set for a clique in linear time (see Section 2),
we assume that none of the connected components of the input graph is a clique.

Now, we describe the data reduction rule that shrinks clique-like substructures.
Consider a critical cliqueK in the input graphG and its neighborsNG(K) and note
thatNG(K) separatesK from the rest ofG. If activating all vertices inNG(K) is not
enough to activate all vertices ofK, then every target set ofG has to contain some ver-
tices ofK. Without loss of generality, we can assume those vertices tohave the highest
threshold among all vertices ofK. These considerations lead to the following.

Reduction Rule 2. Let I := (G, thr, k) be an instance ofTSSand letK be a critical
clique inG. Moreover, let(G′, thr′, k′) be the reduced instance of(G[NG[K]], thr, k)
with respect toNG(K) and letS denote an optimal target set for(G′, thr′) (see Defi-
nition 1). Then, reduceI with respect toS.

HereinG′ is a clique and, hence, an optimal target setS for (G′, thr′) can be computed
in linear time (see Section 2).

Having reduced the input with respect to Reduction Rule 2, weclaim that we can
limit our considerations to a small subset of vertices of theremaining graph. To see this,
consider a cluster edge deletion setE′ of a graphG and letV (E′) denote the vertices
incident to the edges inE′ (we call the vertices inV (E′) affectedby E′).

Lemma 1. Let I := (G, thr, k) denote a yes-instance reduced with respect to Reduc-
tion Rule 2 and letE′ denote an optimal cluster edge deletion set ofG. Then, there
exists an optimal target setS for I with S ⊆ V (E′).



By Lemma 1, an optimal target set can be found by systematically checking every
subset of the at most2ξ vertices affected by an optimal cluster edge deletion set, leading
directly to the following theorem.

Theorem 2. TARGET SET SELECTION can be solved inO(4ξ ·m + n3) time, whereξ
denotes the cluster edge deletion number ofG.

Restricted Thresholds.In the following, we present a data reduction shrinking large
critical cliques until their size can be bounded by the maximum thresholdtmax. Thereby,
we obtain a problem kernel with2ξ(tmax+1) vertices, which is linear inξ if the thresh-
olds of the input are bounded by a constant.

Consider a critical cliqueK containing at leasttmax +1 vertices. Informally speak-
ing, it is sufficient to keep thetmax vertices ofK with the smallest thresholds, since if
these are activated, then all vertices inNG[K] are activated.

Reduction Rule 3. Let(G, thr, k) be an instance ofTSSand lettmax denote the max-
imum threshold of this instance. Furthermore, letK be a critical clique inG with
|K| > tmax and letKhigh denote the|K| − tmax vertices with highest thresholds ofK.
Then, delete the vertices inKhigh fromG.

In a reduced instance, the number of critical cliques is upper-bounded by2ξ and
each critical clique contains at mosttmax vertices. Thus, the number of vertices in a
reduced graph is at most2ξ(tmax + 1).

Theorem 3. TARGET SET SELECTION admits a problem kernel with2ξ(tmax + 1)
vertices. The kernelization runs inlinear time.

4 Vertex Cover Number

The vertex cover number of a graphG denotes the cardinality of an optimal vertex
cover ofG (that is, a minimum-size vertex set such that every edge has at least one
endpoint in this set). Since deleting all vertices in a vertex cover results in a graph
without edges, a vertex cover of a graphG is a feedback vertex set forG as well.
Moreover, it is a well-known fact that the feedback vertex set number is an upper bound
on the treewidth. Hence, the vertex cover number is an upper bound on the treewidth,
too. Ben-Zwi et al. [1] have shown that TSS is W[1]-hard for the combined parameter
treewidth and target set size. Indeed, the given reduction shows that TSS is W[1]-hard
even for the combined parameter feedback vertex set number and target set size. These
hardness results motivate the study of TSS parameterized byparameters larger than the
feedback vertex set number as, for example, the vertex covernumber [9,10].

Arbitrary thresholds.If the input graphG is reduced with respect to Reduction Rule 1,
then the threshold of each vertex is bounded by its degree. Thus, it can be activated
by activating all its neighbors. This implies that a vertex cover ofG is also a target set
for G and, hence, the target set sizek is at most the vertex cover numberτ of G. In this
sense, the vertex cover numberτ is a “weaker” parameter than the target set sizek and
allows for fixed-parameter algorithms with respect to parameterτ .



Let G = (V, E) denote a graph and letZ denote a vertex cover ofG. Then,I :=
V \Z is an independent set. The key to showing fixed-parameter tractability of TSS with
respect toτ is to bound the number of vertices inI that are candidates for an optimal
target set. To this end, vertices inI with an identical neighborhood are of particular
interest. In this section,τ denotes the vertex cover number ofG.

Definition 2. Two pairwise non-adjacent vertices with the same open neighborhood
are calledtwins. A setV ′ of vertices is calledcritical independent setif each two distinct
vertices fromV ′ are twins andV ′ is maximal with respect to this property.

The vertices ofI are contained in at most2|Z| critical independent sets (one for
each subset ofZ). The next observation allows us to focus on a restricted number of
vertices for each critical independent set when looking foran optimal target set.

Observation 3 LetG = (V, E) denote a graph and letu, w ∈ V denote two twins ofG
with thr(u) ≥ thr(w). In addition, letS denote a target set withw ∈ S andu 6∈ S.
Then,S′ := S \ {w} ∪ {u} is a target set forG.

In the following, we assume that the vertices of the input graph are ordered de-
creasingly by their thresholds. By Observation 3, we can directly conclude that there
is an optimal target set that contains for each critical independent setI only vertices
from the set of thek ≤ τ vertices with highest threshold ofI. Moreover, we can bound
the number of critical independent sets by a function ofτ , leading to fixed-parameter
tractability of TSS with respect toτ .

Theorem 4. TARGET SET SELECTION can be solved inO(2(2τ+1)·τ ·m) time, whereτ
denotes the vertex cover number ofG.

Proof. (Sketch) Let(G = (V, E), thr, k) denote the input instance for TSS. In the
following, we assume thatG is reduced with respect to Reduction Rule 1.

The algorithm works as follows. In a first phase, it computes an optimal vertex
coverZ of G (this can be done inO(1.3τ + τn) time [17]). If k ≥ |Z|, then the algo-
rithm returnsZ. In a second phase it computes a setC of at most(2τ + 1) · τ vertices
for which there exists an optimal target setS with S ⊆ C. Then, in a third phase, the al-
gorithm determines an optimal target set by systematicallychecking every subset ofC.
The setC in the second phase is computed as follows: For each criticalindependent
set,C contains thek vertices with highest threshold (for a critical independent set of
cardinality at mostk all its vertices are inC). In the third phase, the algorithm system-
atically checks every size-k subset ofC for being a target set. If no such target set is
found, then it rejects the instance.

Next, we show that the presented algorithm finds a target set of size at mostk for G,
if it exists. For the correctness of the first phase note that,sinceG is reduced with
respect to Reduction Rule 1, any vertex cover ofG is a target set forG, as well. For
the correctness of the other phases note that, by iteratively applying Observation 3, we
can directly conclude that there exists an optimal target set S with S ⊆ C. Thus, the
correctness of the algorithm follows by the fact that it checks every size-k subset ofC.

We omit the running time analysis. ⊓⊔



Restricted thresholds.Next, we show that TSS admits a problem kernel withO(2τ ·
tmax) vertices. Moreover, we show that TSS parameterized by the vertex cover number
presumably does not admit a polynomial problem kernel even for majority thresholds.

First, we present a problem kernel for the combined parameter vertex cover num-
ber τ and maximum thresholdtmax. To bound the number of vertices in a reduced
instance, we need (besides Reduction Rule 1) one further rule that reduces large critical
independent sets. For every critical independent set of size at leasttmax + 1, this rule
removes all but thetmax vertices with “smallest thresholds”.

Reduction Rule 4. Let (G, thr, k) denote aTSS-instance reduced with respect to Re-
duction Rule 1 and letI denote a critical independent set ofG with |I| > tmax + 1.
Then delete the|I| − (tmax + 1) highest-threshold vertices ofI.

Theorem 5. TARGET SET SELECTION admits a problem kernel with at mostO(2τ ·
tmax) vertices, wheretmax denotes the maximum threshold andτ denotes the vertex
cover number ofG. The kernelization runs inO(n · (n + m)) time.

Dom et al. [6] showed that HITTING SET does not admit a problem kernel of size(|U |+
k′)O(1) unless an unexpected complexity-theoretic collapse occurs. Here,k′ denotes the
solution size and|U | denotes the size of the universe. Bodlaender et al. [3] introduced
a refined concept of parameterized reduction (called polynomial time and parameter
transformation) that allows to transfer such hardness results to new problems. By a
reduction from HITTING SET to TSS, we can show that, under reasonable complexity-
theoretic assumptions, TSS does not admit a problem kernel of size(τ + k)O(1).

Theorem 6. TARGET SET SELECTION on bipartite graphs with majority thresholds
does not admit a problem kernel of size(τ + k)O(1) unless coNP⊆ NP/poly, wherek
denotes the target set size andτ denotes the vertex cover number ofG.

5 Feedback Edge Set Number

Another structural parameter of a graphG that is lower bounded by its treewidth is
the sizef of a smallest feedback edge set ofG, that is, a smallest set of edges ofG
whose deletion makesG acyclic. Recall from Section 4 that TSS isW [1]-hard with
respect to the parameter feedback vertex set. Some real-world social networks are tree-
like (for example sexual networks [19], see also [5]) or scale-free (see [12]). This often
corresponds to small feedback edge sets and motivates parameterizing TSS withf . Like
the vertex cover numberτ , the feedback edge set numberf is a “weaker” parameter than
treewidth, raising hope for faster algorithms for TSS in cases wheref is small. A clear
advantage over treewidth (and tree decompositions) is thatan optimal feedback edge
set can be determined efficiently by computing a spanning tree.

First, we show a problem kernel of sizeO(f) for TSS based on two data reduction
rules. Second, we present an algorithm that solves TSS in4f · nO(1) time.



Kernelization for TSS.In this paragraph, we present two data reduction rules for TSS
that can be applied exhaustively in linear time and leave a problem kernel of sizeO(f).
Reduction Rule 5 removes verticesv with thr(v) = deg(v) = 1 from G. Note that
Reduction Rule 1 (see Section 2) removes all other degree-one vertices fromG.

Reduction Rule 5. Let (G = (V, E), thr, k) be an instance forTSS reduced with
respect to Reduction Rule 1 and letv ∈ V with thr(v) = deg(v) = 1. Then deletev
fromG.

The correctness of Reduction Rule 5 follows immediately from Observation 2 and
one easily verifies that Reduction Rule 5 can be exhaustivelyapplied in linear time. In
a graph reduced with respect to Reduction Rules 1 and 5, we canbound the number of
vertices with degree at least three by2f .

Lemma 2. A graph with feedback edge set numberf reduced with respect to Reduction
Rules 1 and 5 has at most2f vertices with degree at least three.

With Lemma 2 we bound the number of vertices with degree at least three in graphs
that are reduced with respect to Reduction Rules 1 and 5. Since these graphs do not
contain degree-one vertices, it remains to bound the degree-two vertices.

Reduction Rule 6. Let (G, thr, k) be an instance forTSSreduced with respect to Re-
duction Rule 1 and let(u, v, w) be a path inG with deg(u) = deg(v) = deg(w) = 2
whereu and w are neither neighbors nor twins. If there is a vertexx ∈ {u, v, w}
with thr(x) = 1, then bypassx, otherwise, bypassu andw and decreasek by one.

Theorem 7. TARGET SET SELECTION admits a problem kernel of sizeO(f), wheref
denotes the feedback edge set number. The kernelization runs in linear time.

Proof. Let (G, thr, k) be an instance of TSS reduced with respect to Reduction Rules1,
5, and 6. Furthermore, letF denote an optimal feedback edge set forG. Thus,T :=
G − F is a forest. Consider the graphT ∗ that results from bypassing all vertices inT
having degree two in bothG andT . It is easy to see that all vertices inT ∗ have the same
degree inT ∗ as they have inT . Hence, each vertexv with degree two inT ∗ is incident
to an edge ofF in G because otherwise it would have been bypassed. Furthermore, each
leaf in T ∗ not incident to an edge ofF is also a leaf inG, but sinceG is reduced with
respect to Reduction Rules 1 and 5, each leaf ofT ∗ is incident to an edge ofF . Thus,
the number of vertices ofT ∗ with degree at most two is bounded by2f . Furthermore,
by Lemma 2, the number of vertices ofT ∗ with degree at least three is bounded by2f .
Thus, the overall number of vertices inT ∗ is at most4f . Finally, sinceG is reduced
with respect to Reduction Rule 6, for each edge{u, v} of T ∗, there are at most two
vertices betweenu and v in T . Hence, the overall number of vertices ofT can be
bounded by12f and sinceT is a forest, so can the overall number of edges ofT . By
construction ofT , we can bound the overall number of vertices ofG by 12f and the
overall number of edges ofG by 13f .

It can be shown that any graph can be reduced with respect to Reduction Rules 1, 5,
and 6 in linear time. ⊓⊔



FPT algorithm for TSS.Theorem 7 already implies that TSS is fixed-parameter tracta-
ble by applying a brute-force search to the size-O(f) problem kernel. Here, we develop
a fixed-parameter algorithm with much better efficiency.

Our algorithm computes a solutionS for an input instance(G, thr, k) for TSS if
there is one. The algorithm runs in two phases. In Phase 1, we branch on degree-two
vertices that are in a cycle ofG. In Phase 2, we alternatingly try solutions for a cyclic
subgraph and apply previous data reduction rules.

In the algorithm, we use the notion of branching rules. Here,we analyze an in-
stanceI and replace it with a setI of new instances. The creation of new instances
is defined in branching rules, which we callcorrect if the original instanceI is a yes-
instance if and only if there is a yes-instance inI. In analogy to data reduction rules,
instances that are not subject to a specific branching ruleR are calledreducedwith re-
spect toR. By considering each application of a branching rule as a vertex with parentI
and childrenI, we can define asearch treefor each input instance.

In the following, we denote the set of all vertices of a graphG being part of cycles
by VC(G). LetC be some two-edge connected component ofG containing at least three
vertices, that is,C is a non-singleton connected component that remains connected after
removing all bridges fromG.

Phase 1.In the first phase of our algorithm we branch on vertices ofVC(G) with degree
two and threshold two. To this end, we present a branching rule with branching number
two that decreases the feedback edge set numberf in every application. This lets us
bound the search tree size by2f .

Branching Rule 1. Let I := (G = (V, E), thr, k) be an instance ofTSSand letv ∈
V ∩ VC(G) and thr(v) = deg(v) = 2. Then, create the instance ofI that is reduced
with respect to{v} and create the instance(G − v, thr, k).

It is easy to see that Branching Rule 1 branches into at most two cases. After each
application of Branching Rule 1, our algorithm exhaustively applies Reduction Rules 1
and 5 to the created instances. If none of Branching Rule 1 andReduction Rules 1 and 5
applies to any of the created instances, then Phase 2 of the algorithm begins.

Phase 2.At the beginning of the second phase, no input instance is subject to Bran-
ching Rule 1 or Reduction Rules 1 and 5. In Phase 2, we branch onvertices with degree
at least three that are contained in cycles, followed by the application of Reduction
Rules 1 and 5. This process is iterated for all input instances until all input instances
can trivially be determined to be yes- or no-instances.

Let I1 := (G1, thr1, k1) denote an input instance for Phase 2. For a two-edge con-
nected componentC of G1, we denote the set of vertices ofVC(C) that have degree
two by V2(C). Note that, sinceG1 is reduced with respect to Reduction Rule 1 and
Branching Rule 1, all vertices inV2(C) have threshold one. Hence, by Observation 2,
there is an optimal solution forI1 that does not contain vertices ofV2. Note that, if
each two-edge connected component ofG1 is contracted into a single vertex, then the
remaining graph is a forest. In the following, we call this forest thecomponent forestT1

of G1. SinceG1 is reduced with respect to Reduction Rules 1 and 5, every leafof T1

corresponds to a contracted non-singleton two-edge connected component ofG.



Branching Rule 2. Let I1 := (G1, thr1, k1) be an instance ofTSS reduced with re-
spect to Reduction Rules 1 and 5 and letT1 be the component forest ofG1. Furthermore,
let C denote a two-edge connected component ofG1 corresponding to a leaf inT1, letv
be the only vertex inNG1

(V (C)), and letw be the only vertex inN(v) ∩ V (C). Then,
for eachV ′ ⊆ V (C) \ V2, create a new instance by modifyingI1 in the following way.
If V ′ is a target set forC, then create the instance ofI1 that is reduced with respect
to V ′. Else, ifV ′ is a target set forC with thr1(w) decreased by one, then deleteV (C)
fromG1 and decreasek1 by |V ′|. Otherwise, reduce to a trivial no-instance.

Note that one application of Branching Rule 2 can be picturedas branching into the
casesv ∈ S andv 6∈ S for each vertexv ∈ VC(G1) \ V2. By Lemma 2,|VC | ≤ 2f1,
with f1 denoting the feedback edge set number ofG1. Since each application of Bran-
ching Rule 1 decreases the feedback edge set number of the input, continuing the search
tree of Phase 1 with Branching Rule 2 leads to a search tree of depth at most2f and
each node in the search tree has at most two children. Therefore, the overall search tree
size is at most4f . After the exhaustive application of Branching Rule 2 and Reduction
Rules 1 and 5, we can decide for each remaining instance whether it is a yes-instance
of TSS or not. If some instance is a yes-instance, then the original instanceI is also a
yes-instance of TSS. Otherwise,I is a no-instance of TSS.

Theorem 8. TARGET SET SELECTION can be solved in4f · nO(1) time, wheref de-
notes the feedback edge set number.

6 Conclusion and Open Problems

Following the spirit of multivariate algorithmics [18], westudied natural parameteriza-
tions of TSS. We confirmed the intuition deriving from the hardness of DOMINATING

SET that TSS remains hard for the parameter diameter. However, for the structural pa-
rameters “cluster edge deletion number”, “vertex cover number”, and “feedback edge
set number” we established tractability results by showingfixed-parameter algorithms
and kernelizations. Since for several applications the parameter “number of activation
rounds” appears to be relevant and should be small, this motivates to investigate the
influence of this parameter on the complexity of TSS. As it turns out, however, TSS
is already NP-hard for only two rounds; similarly to diameter, this calls for the com-
bination with other parameters. Finally, note that we focused on activatingall graph
vertices; it is natural to extend our studies to cases when only a specified fraction of the
graph vertices shall be activated at minimum cost.
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