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Abstract

Indexing schemes for grids based on space-filling curves (e.g., Hilbert index-
ings) find applications in numerous fields, ranging from parallel processing
over data structures to image processing. Because of an increasing inter-
est in discrete multi-dimensional spaces, indexing schemes for them have
won considerable interest. Hilbert curves are the most simple and popular
space-filling indexing scheme. We extend the concept of curves with Hilbert
property to arbitrary dimensions and present first results concerning their
structural analysis that also simplify their applicability.

We define and analyze in a precise mathematical way r-dimensional
Hilbert indexings for arbitrary » > 2. Moreover, we generalize and sim-
plify previous work and clarify the concept of Hilbert curves for multi-
dimensional grids. As we show, Hilbert indexings can be completely de-
scribed and analyzed by “generating elements of order 17, thus, in com-
parison with previous work, reducing their structural complexity decisively.
Whereas there is basically one Hilbert curve in the 2D world, our analysis
shows that there are 1536 structurally different 3D Hilbert curves. Further
results include generalizations of locality results for multi-dimensional in-
dexings and an easy recursive computation scheme for multi-dimensional
Hilbert indexings.
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1 Introduction

Discrete multi-dimensional spaces are of increasing importance in computer sci-
ence. They appear in various settings such as combinatorial optimization, parallel
processing, image processing, geographic information systems, data base systems,
and data structures. For many applications it is necessary to number the points
of a discrete multi-dimensional space (which, equivalently, can be seen as a grid)
by an indexing scheme mapping each point bijectively to a natural number in the
range between 1 and the total number of points in the space. Often it is desirable
that this indexing scheme preserves some kind of locality, that is, close-by points
in the space are mapped to close-by numbers or vice versa. For this purpose,
indexing schemes based on space-filling curves have shown to be of high value
[2,4,5,6,8 7,9, 11, 12, 13, 14, 15, 16, 19].

In this paper, we study Hilbert indexings [10], perhaps the most popular
space-filling indexing schemes. Properties of 2D and 3D Hilbert indexings have
been extensively studied recently [5, 6, 7, 9, 12, 14, 15, 17]. However, most of
the work so far has focused on empirical studies. Up to now, little attention has
been paid to the theoretical study of structural properties of multi-dimensional
Hilbert curves, the focus of this paper. Whereas with “modulo symmetry” there
is only one 2D Hilbert curve, there are many possibilities to define Hilbert curves
in the 3D setting [5, 15]. The advantage of Hilbert curves is their (compared
to other curves) simple structure that may easily outweigh the asymptotically
slightly better (concerning constant factors) locality properties of other space-
filling curves. Also note that in defining indexing schemes for multi-dimensional
grids, descriptional simplicity as provided by “pure” Hilbert indexing is a desir-
able property.

Our results can shortly be sketched as follows. We generalize the notion of
Hilbert indexings to arbitrary dimensions. We clarify the concept of Hilbert
curves in multi-dimensional spaces by providing a natural and simple mathe-
matical formalism that allows combinatorial studies of multi-dimensional Hilbert
indexings. For reasons of (geometrical) clearness, we base our formalism on per-
mutations instead of e.g. matrices or other formalisms [3, 4, 5, 17]. So we obtain
the following insight: Space-filling curves with Hilbert property can be completely
described by simple generating elements and permutations operating on them.
Structural questions for Hilbert curves in arbitrary dimensions can be decided by
reducing them to basic generating elements. Putting it in catchy terms, one might
say that for Hilbert indexings what holds “in the large” (i.e., for large side-length),
can already be detected “in the small” (i.e., for side-length 2). In particular, this
provides a basis for mechanized proofs of locality of curves with Hilbert property
(cf. [15]). In addition, this observation allows the identification of seemingly dif-
ferent 3D Hilbert indexings [5], the generalization of a locality result of Gotsman
and Lindenbaum [9] to a larger class of multi-dimensional indexing schemes, and
the determination that there are exactly 6 - 2% = 1536 structurally different 3D
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Hilbert curves. The latter clearly generalizes and answers Sagan’s quest for de-
scribing 3D Hilbert curves [17]. Finally, we provide an easy recursive formula for
computing Hilbert indexings in arbitrary dimensions and sketch a recipe for how
to construct an r-dimensional Hilbert curve for arbitrary r in an easy way from
two (r — 1)-dimensional ones.

As a whole, our work lays foundations for future work dealing with com-
binatorial properties of multi-dimensional Hilbert curves and, in particular, a
mechanized analysis of locality properties of multi-dimensional Hilbert curves.
The main focus of this paper, however, is to provide a theoretical study of nice
combinatorial properties of Hilbert curves in arbitrary dimensions and it is not to
study e.g. locality properties in great depth, which may be the subject of future
study.

The paper is organized as follows. Section 2 presents some basic facts on
space-filling curves and grid indexings and, in particular, gives the construction
scheme of 2D Hilbert curves. Section 3 contains our method to describe multi-
dimensional Hilbert indexings by “generators” and permutations operating on a
given corner-indexing of a cube. One of our main results shows that the struc-
tural analysis of multi-dimensional Hilbert curves can be completely reduced to
the analysis of their (small) generating elements. In Section 4 we apply the
methodology of Section 3 to derive several results concerning the structural anal-
ysis and computation of curves with Hilbert property. Finally, Section 5 draws
some conclusions, outlines further generalizations, and gives some directions for
future work.

2 Preliminaries

We focus our attention on cubic grids, where, in the r-dimensional case, we have
n” points arranged in an r-dimensional grid with side-length n. An r-dimensional
(discrete) curve C'is simply a bijective mapping C : {1,...n"} — {1,... ,n}",
thus providing a total ordering of the grid points. Note that, by definition, we
do not claim the continuity of a curve. A curve C'is called continuous if it forms
a Hamilton path through the n" grid points. An r-dimensional cubic grid is said
to be of order k if it has side-length 2¥. Analogously, a curve C' has order k if its
range is a cubic grid of order k.

Fig. 1 shows the smallest 2D continuous curve indexing a grid of size 4. This
curve can be found in Hilbert’s original work [10, 18] as a constructing unit for a
whole family of curves. Fig. 2 shows the general construction principle for these
so-called Hilbert curves: For any k& > 1 four Hilbert indexings of size 4% are
combined into an indexing of size 4**! by rotating and reflecting them in such a
way that concatenating the indexings yields a Hamilton path through the grid.
Note that the left and the right side of the curve are symmetric to each other.
Thus, as indicated in Fig. 2, we only need to keep track of the orientation of the
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edge which contains the start and end of the curve. As we will see later on, the
above rule uniquely defines the 2D Hilbert indexing up to global rotation and
reflection.

One of the main features of the Hilbert curve is its “self-similarity”. Here
“self-similar” shall simply mean that the curve can be generated by putting to-
gether identical (basic construction) units, only applying rotation and reflection
to these units. In a sense, the Hilbert curve is the “simplest” self-similar, recur-
sive, locality-preserving indexing scheme for square meshes of size 2% x 2*.

3 Formalizing Hilbert curves in r dimensions

In this section, we generalize the construction principle of 2D Hilbert curves
to arbitrary dimensions in a rigorous, mathematically precise way. We restrict
attention to indexing schemes of cubes with side-lengths 2* for any natural num-
ber k, although generalizations are straightforward (see Section 5). We generate
an r-dimensional curve filling a cubic grid with side-length 2% with a sequence of
2" subcurves filling grids with side-length 28! each. For the generating subcurves
we claim a certain similarity as given by the 2D Hilbert indexing. By “similar”
we mean that the subcurves can be transformed by a symmetry mapping (reflec-
tion or rotation) into each other. We need a certain formalism to express these
symmetry mappings. This, for example, can be done by means of permutations.
Fixing a certain indexing of the corners in a multi-dimensional grid, such a sym-
metry transformation can be expressed by the action of a permutation on the
given indexing. This is one of the most intuitive approaches to describe such
automorphisms on the grid. Furthermore, there turns out to be a very simple re-
lation between curves of the lowest order possible and such corner-indexings. We
strongly believe that this at first sight maybe strange formalism used by us was
the basis for deriving structural results on e.g. 3D Hilbert indexings as presented
in Section 4. So we can hardly imagine a comparatively simple presentation of all
structurally different 3D Hilbert curves as given in Table 1 (see Subsection 4.1)
using other formalisms.
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3.1 Classes of Self-Similar Curves and their generators

Let V. := {x129-- 2, 12, | z; € {0,1} } be the set of all 2" corners of an r-
dimensional cube coded in binary. Moreover, let Z : V, — {1,...,2"} denote
an arbitrary indexing of these corners. To describe the orientation of subcurves
inside a curve of higher order, we want to use symmetry mappings, which can be
expressed via suitable permutations operating on such corner-indexings. Observe
that any r-dimensional curve C; of order 1 naturally induces an indexing of
these corners (see Fig. 1 and Fig. 3). We call the obtained corner-indexing the
canonical one and denote it by C:V, —s {1,...,2"}. Furthermore, let Wz
( € Sym(27)) denote the group of all permutations (operating on Z) that describe
rotations and reflections of the r-dimensional cube. In other words, W7 is the set
of all permutations that preserve the neighborhood-relations n(i, j) of the corner
indexing Z:

Wz = {r € Sym(2") : n(i,j) =n(x(i),7(j)) Vi,j€{l,...,2"}}.

For a given permutation 7 € W7z, we sometimes write (7 : Z) in order to emphasize
that 7 is operating on a cube with corner-indexing Z. The point here is that once
we have fixed a certain corner-indexing Z, the set W7z will provide all necessary
transformations to describe a construction principle of how to generate curves of
higher order by piecing together a suitable curve of lower order. Obviously each
permutation (7 : Z) acting on a given corner-indexing Z canonically induces a
bijective mapping on a cubic grid of order k. In the following we do not distinguish
between a permutation and the corresponding mapping on a grid.

We partition an r-dimensional cubic grid of order k into 2" subcubes of or-
der k£ — 1. For each xy ---x, € V, we therefore set

k _ _
pgm)r--xr) 3:($1‘2k 1a---axr'2k 1)6{0,_”’Zk—l}x,_,x{O,...,Qk—l}

to be the “lower-left corner” of such a subcube. Let C}_; be an r-dimensional
curve of order k — 1 (k > 2). Our goal is to define a “self-similar” curve Cy of
order k by putting together 2" pieces of type Cy_1. Let Z:V, — {1,...,2"} be
a corner-indexing. We intend to arrange the 2" subcurves of type C}_; “along”

Z. The position of the #'-th (where i’ € {1,...,2"}) subcurve inside C} can for-

mally be described with the help of the grid-points pgi)lmxr). Bearing in mind the
classical construction principle for the 2D Hilbert indexing, the orientation of the
constructing curve C}_; inside Cj can be expressed by using symmetric trans-
formations (that is reflections and rotations). For any sequence of permutations

Tiy...,Tor € Wz we therefore define
Cy(i) := (7 : T) o Cy— (i mod (2571)") +p(Ik_)1(2.,), (1)

where i € {1,...,(2%)"} and ¢/ = (i — 1) div (2¥7')" + 1. The geometric in-
tuition behind is that the curve C} can be partitioned into 2" components of
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the form Cy_; (reflected or rotated in a suitable way). These subcurves are ar-
ranged inside C} “along” the given corner-indexing Z. The orientation of the
i'-th subcurve inside C} is described by the effect of 7, operating on Z.

Definition 1. Whenever two r-dimensional curves C_; of order £ —1 and C}, of

order k satisfy equation (1) for a given sequence of permutations 7y, ... , 79 € Wz
(operating on the corner-indexing Z : V, — {1,...,2"}), we write
C I« C
Bl (rymr) < G

and call C)_; the constructor of Cy,.

Our final goal is to iterate this process starting with a curve C of order 1.
It’s only natural and in our opinion “preserves the spirit of Hilbert” to fix the
corner-indexing according to the structure of the defining curve C. Hence, in this
situation we can specify our Z to be the canonical corner-indexing C. By suc-
cessively repeating the construction principle in equation (1) k times, we obtain
a curve of order k.

Definition 2. Let C = { Cy | k > 1} be a family of r-dimensional curves of
order k. We call C a Class of Self-Similar Curves (CSSC) if there exists a sequence
of permutations 7q,... ,7 € Wa, (operating on the canonical corner-indexing

6’;) such that for each curve C}, it holds that

C, O < O O < Oy < O

(T1sesTar) (T1sesTar) (T1ses72r) (T150572r)

In this case, C' is called the generator of the CSSC C and we set
%(Cla (7-17"' aTQT>) :{Ck | k Z ]-}

as the CSSC generated by Cy and 71,... ;7. ACSSCC={Cy | k> 1}1is
called Class with Hilbert Property (CHP) if all curves Cy are continuous.

Note that the CSSC ’H( Ci, (T1,... ,Tor) ) is well-defined, because any CSSC
is uniquely determined by its generator C; and the choice of the permutations
Tty Tor € Wa. The nomenclature “Curve with Hilbert Property” is due to
the fact that the constructing principle for a CHP grew out of the classical one
for 2D Hilbert curves. Our concept for multi-dimensional CHPs only makes use
of the very essential tools which can be found in Hilbert’s context (cf. [10]) as
rotation and reflection. We deliberately avoid more complicated structures (e.g.,
the use of different sequences of permutations in each inductive step, or the use of
several generators for the constructing principle) in order to maintain conceptual
simplicity and ease of construction and analysis. However, the theory which we
develop in this paper doesn’t necessarily restrict to the continuous case. That
is the reason why all our definitions and theorems in Subsection 3.2 are held in
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the more general setting of non-continuous curves. In Subsection 3.2 we pro-
vide a necessary and sufficient condition on the generating elements of a CSSC
(generator and sequence of permutations) such that the whole family consists of
continuous curves only, i.e., is a CHP. We end this subsection with an example.

Example. One easily checks that the classical 2D Hilbert indexing can be de-
scribed via

H(Hil}, ((24),id,id, (13))) = {Hil} | k>11},

where the generator Hil? is given in Fig. 1.

As Theorem 4 will show, this is the only CHP of dimension 2 “modulo sym-
metry,” which, once again, justifies the naming “Curve with Hilbert Property”.

3.2 Disturbing the generator of a CSSC

In this subsection, we analyze the effects of disturbing the generator of a CSSC
by a symmetric mapping. We will see that any disturbance of the generator
will be hereditary to the whole CSSC in a very canonical way. And also the
other way round: if two different CSSCs show a certain similarity in one of their
members, this similarity can already be found in the structure of the correspond-
ing generators. We illustrate this by the following diagram. Given two CSSCs
'H(Cl, (11, .. ,Tgr)) ={Cy | k> 1} and H(Dl, (71, ... ,Tgr)) ={Dy | k > 1},
respectively.! Suppose there is a similarity at a certain stage of the construc-
tion, i.e., for some kg the curves Cy, and Dy, can be obtained from each other
by a similarity transformation ®. Can we conclude a vertical link between the
curves of other orders? The investigations in this section will show that the inner
structure of CSSCs are strong enough to yield the same behavior at the stage
of any order. As a consequence, it will be sufficient to analyze the generating
elements of a CSSC. Since all the information is encoded in the generator and the
defining permutations, questions like continuity of a CSSC, structural similarity
with other CSSCs can be answered by considering the generating elements only.

Ci Ci Ci
Cr (71,---,7;) < G (7'1:---,7';) < e (Tls---a’f;) < Gy
lq) 5 F 5 F 5 lq)
D, D, Dy
Dl (7'1,...,7'2:) < DQ (7'1,...,7'2:) < v (7'1,...,7'21«1) < Dk

'Note that the 7’s used in the definition of both CSSCs yield completely different automor-
phisms on the grid. Whereas in the first case they refer to the corner-indexing C, in the second
case they act on the corner-indexing Dy, given by the generator D;.
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We split the proof of the main theorem of this section into several steps, since
each of these already contains some nice structural behavior of CSSCs. As a first
step, we make a simple observation concerning the behavior of the construction
principle of Definition 1 under the “symmetric disturbance” of a constructor:

Lemma 1. Let C_1 and C}, be curves of order k—1 and k, respectively. Suppose
Ci_1 1s the constructor of Cy, i.e., Cr_y (n,...,m)z<< Cy, for any sequence of
permutations Ty, ... ,7or € Wz (acting on a given corner-indexing ). Then for

arbitrary ¢ € Wz we have
(¢ : I) © Ckfl (710¢*1,...,72r0¢711)<< Ck'
Proof. Since Cy_y is the constructor of C}, by Definition 1 we have:
= (rp:I)o (¢ :T)o(¢:T)oChy (i mod (287")") +p(Ik,)1(i/)
= (wod D)o ((6:T)0 Cor) (imod (2°1)7) +p
where i € {1,...,(2%¥)"} and ' = (i — 1) div (2¥7!)" + 1, proving the claim by
Definition 1. 0

Whereas, by Lemma 1, we investigated the influence of disturbing the con-
structor, we now, in a second step, analyze how transforming the underlying
corner-indexing influences the construction principle. We will need such a result,
since two different CSSCs (by definition) come up with two different corner-
indexings, each of which given by the underlying generator.

Lemma 2. Given the assumptions of Lemma 1 (that is: Cy_y ( )I<< Ch

for two curves Cyx_1 and Cy of successive order), then for arbitrary ¢ € Wz and

the modified corner-indexing K := ¢ 1 oZ with ® = (¢ : I) = (¢ : K) we have?
Ck—l ( ,C<< d o Ck .

T1 Ogb,... sTor od))

T1yee0,TOT

Proof. First we deduce a simple transformation-rule for permutations out of our
given relation I = ¢~ ' oZ. The effect of a given permutation = € Wy acting on Z
is equivalent to the effect of the transformed permutation ¢! o 7 o ¢ operating
on the transformed corner-indexing K, i.e. (7 :Z) = (¢ 'omo¢: K). Setting
7 = ¢, this particularly shows (¢ : Z) = (¢ : K) = P.

By assumption, C}_; is the constructor of C} which for all i € {1,...,(2%)"}
and 7' = (i — 1) div (2’“_1)’" + 1 yields
Ck(Z) = (Ti’ : I) o (i (Z mod (2k—1)r) + p(Ik,)l(l,)
= Po(Ci(i) = Po <(Ti/ :Z) o Ciy (imod (281)7)  + pgg,)l(i,)
= ®o (r7:I) o Cy_(imod (21)) + p(Ik,)l(¢(i,))

2The fact that the corner-indexing is disturbed by ¢! instead of ¢ is due to technical
reasons only.
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where the last equation is true, because the effect of the symmetry mapping ®
on a CSSC-curve C} of order k can be split into its effect on the 2" subcurves
of order £ — 1 and the effect on the arrangement of these subcurves inside CY.
Whereas the i'-th subcurve of Cj, lies next to the corner Z7'(i'), the position of
the i'-th subcurve of ® o Cy is transformed according to ¢. Therefore its new
position is given by the corner Z~(¢(i')). Thus,

do Ck(z) = (¢ o Ty I) @) Ck,1 (Z mod (2k—1)r) + pgi-)_%gb)(zl)
= (Ti’ o ¢ : ’C) o Ck,1 (Z rnod (2k—1)r) + p;ckl1(i/);

by applying the transformation-rule treated at the beginning with 7 = ¢o7;. By
Definition 1 the last equation proves our claim. O

Lemma 1 and 2 now allow the proof of the main result of this section. For
its illustration we refer to the diagram at the beginning of this section. Do also
recall the point made in the footnote there.

Theorem 3. Let C be the generator of the C’SSCH(Cl, (71, .. ,Tgr)) ={Cy |
k > 1} and D, the generator of the CSSC H( Dy, (1,... ,7or) ) = {Dy | k> 1}.

For an arbitrary permutation ¢ € Wz and the corresponding symmetric mapping
®=(p:Cy) = (¢: D), the following statements are equivalent:

(i) ® o Cy, = Dy, for some ky > 1.
(ii)) ® o Cy, = Dy, for all k > 1.

Proof. (ii) = (i) is trivial. For (i) = (ii) we first show that statement (ii) is true
for the generators Cy and Dy: If kg > 1 we can divide the cubic grid of order k
into 2" subgrids of order ky — 1. By the construction principle for CSSCs, the
curves C@Jand Dy, traverse these subgrids “along” the canonical corner-indexings
Cy resp. D;. Since, by assumption, ®oCy, = Dy, the corresponding relation also
holds true for the corner-indexings a and E, which finally yields the validity of
the equation ® o C'; = Dy, because of the isomorphisms C ~ C resp. Dy ~ D;.

We proceed proving (ii) by induction on k. Assuming that Dy = ® o Cy
we show this relation for £ + 1 by applying Lemma 1 and Lemma 2. Since
{Cy | E > 1} is a CSSC, we get

Ci
Ck (Tl,...,7271~) < Ck+1
Lemma 1 o
00k (nosrmropy < Chna
—D;
Lemma 2 D Dy
k (T1,eee,Tor) < do Ck+1 )

10
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where the last relation makes use of bvl =¢lo a, which we immediately obtain
from the given equation D; = ® o 1. This implies Dj; = ® o C}4; because of
the CSSC-property of {Dy, | k > 1}. O

In particular, the result of Theorem 3 implies that any questions concerning
the structural similarity of two CSSCs can be reduced to the analysis of their
generators. Any symmetric correspondence between two CSSCs in the large can
be detected in the small, that is, in the structure of their generators. Thus, in
order to give a classification of CSSCs where two families of curves that are equal
modulo symmetry (rotation and reflection) are not distinguished, we need only
distinguish between generators which differ modulo symmetry. We may therefore
exclusively restrict our attention to the analysis of different types of generators
and of suitable sequences of permutations. So, our result greatly simplifies the
complete classification and the construction of all structurally different CSSCs.
Moreover, it lays the foundations of a mechanized analysis of, for example, locality
properties of multi-dimensional Hilbert indexings (cf. [15]).

4 Applications: computing and analyzing CHPs

First in this section, we attack a classification of all structurally different CHPs
for higher dimensions. Whereas we can provide concrete combinatorial results
for the 2D and 3D cases, the high-dimensional cases appear to be much more
difficult. The basic tool for such an analysis, however, is given by Theorem 3. In
the following subsections we sketch how to construct Hilbert indexings in higher
dimensions and thus clarify the existence of such objects in arbitrary dimensions.
Also in this section, we discuss computational aspects of Hilbert indexings and
finally we conclude with locality properties of such curves. The general structural
behavior of CHPs is sufficient to extend some results provided in previous work,
such as Gotsman and Lindenbaum [9].

4.1 Classification Theorems for the two and three dimen-
sional cases

Our first theorem investigates the two-dimensional setting. The result given
below justifies the naming “class with Hilbert property” (CHP). Also, note that
the subsequent proofs make decisive use of the geometric clearness provided by
our formalism.

Theorem 4. The classical 2D Hilbert indexing H( Hil;, ((24),id, id, (13)) ) is
the only CHP of dimension 2 modulo symmetry.

3A disturbance by ® implies a transformation of the corner-indexings by ¢!, which can be
checked.easily.

11
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Figure 3: Continuous 3D generators Hil?.x and their canonical corner-indexings
Hil? x.

Proof. Due to Theorem 3 it suffices to show that Hil? is the only continuous
2D generator, which is obvious. In addition, we have to check whether there is
another sequence of permutations such that 4 generators Hilf can be arranged in

a grid of order 2 along the canonical corner-indexing Hil? in a continuous way. A
simple combinatorial consideration shows that no other sequence of permutations
yields a continuous curve of order 2 whose starting- and endpoints are located at
corners of the grid. However, any constructor for a continuous curve of higher
order must have the property that both starting- and endpoint are corner-points
of the grid. O

What about the 3D case? Are there any differences concerning the amount
of possible CHPs? The analysis of the “Simple Indexing Schemes” (which are
related to our CHPs) in Chochia and Cole [5] already shows that the number
of CHPs in the 3D case grows drastically compared to the 2D setting. Lots of
“Simple Indexing Schemes” in [5] now, by our analysis, turn out to be identical
modulo symmetry. Our goal is to specify all structurally different CHPs, that is,
all CHPs that are not identical modulo symmetry (rotation and reflection). Since,
by Theorem 3, we find any symmetric similarities of two CHPs in the structure of
their generating elements, we may restrict our attention to the investigation of the
generators and all suitable sequences of permutations. In addition, Lemma 1 and
Lemma 2 can be seen as helpful tools to describe symmetrically disturbed CHPs
in a very constructive way. They at least provide formulas of how to calculate
the sequence of permutations for a disturbed CHP out of the given sequence of
the original CHP. The following theorem also generalizes and answers work of
Sagan [17].

Theorem 5. For the 3D case there are 6 - 28 = 1536 structurally different (that
is: not identical modulo reflection and rotation) CHPs. These types are listed in
Table 1.

Proof. Theorem 3 says that we can restrict our attention to checking any con-
tinuous curves of order 1 which are different modulo symmetry. Given such a
continuous generator C', the total amount of CHPs which can be constructed by

12
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Table 1: Description of all 3-dimensional CHPs.
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Figure 4: Construction principles for CHPs with generators Hil}.A and Hil}.B.

C'is given by all possibilities of piecing together 8 (rotated or reflected) versions of
C (“subcurves”) along its canonical corner-indexing C. By exhaustive search, we
get that there are 3 different (modulo symmetry) types of continuous generators,
namely Hil}.A, Hil}.B and Hil}.C (see Fig. 3). As described above, we now have
to check whether there are continuous arrangements of these generators along
their canonical corner-indexings. Beginning with type A, an exhaustive combi-
natorial search yields that there are 4 possible continuous formations of Hil?.A

along Hil®.A. All possibilities are shown in Fig. 4, where the orientation of each
subcube is given by the position of an edge (drawn in bold lines). For each sub-
cube there are two symmetry mappings which yield possible arrangements for the
generator within such a subgrid. The permutations expressing these mappings
are listed in Table 1.

Analogously, we find out the possible arrangements for generator type B. Note
that there are no more than 2 different continuous arrangements of this generator
along its canonical corner-indexing. Finally we easily check that Hil?.C cannot
even be the constructor of a continuous curve of order 2. Table 1 thus yields that
there are exactly 4 - 2% +2.2% = 6. 28 structurally different CHPs. O

A complete classification of the high-dimensional cases appears to be much
more difficult. We end this section by sketching several further results based on
our characterization of curves with Hilbert property.
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Figure 5: Constructing elements for a 4-D CHP (generator Hil} and permuta-
tions).

4.2 Construction of an r-dimensional Hilbert curve

As already mentioned before, CHPs seem to outperform many other space-filling
curves concerning their properties important for applications like data structures
or parallel processing (e.g. computational effort, locality, etc.). Since such qual-
ities might depend only weakly on the inside structure of a CHP, it, however,
seems to be important to have at least one easily constructible CHP for each
dimension. Without giving an explicit proof here, we just indicate how the con-
struction of a high-dimensional CHP can be done inductively in an easy way: A
continuous generator of dimension r can be derived inductively simply by “joining
together” two continuous generators of dimension r — 1. A similar consideration
finally helps to specify the suitable permutations in order to obtain indexings of
higher order. As an example we give a CHP of dimension 4, whose generator
Hil{ is constructed by joining together two generators Hil?, version (a) (cf. Fig-
ure 3). The generator Hil] and a suitable sequence of permutations are shown in
Fig. 5. Note that this construction principle can be extended to obtain Hilbert
indexings in arbitrary dimensions in an expressive, easy, and constructive way:
Following the construction principle of Hil?, version (a), first pass through an
r — 1-dimensional structure, then in “two steps” do a change of dimension in the
rth dimension, and finally again pass through an r — 1-dimensional structure.
This method applies to finding the generators as well as to finding the permuta-
tions. Thus the construction principle of Hil?, version (a) in a sense is iterated
r — 2 times in order to generate an indexing of dimension r.
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4.3 Recursive computation of CSSCs

Note that whenever a CSSC C = {C} | k > 1} is explicitly given by its generator
and the sequence of permutations, we may use the recursive formula (1) of Sub-
section 3.1 to compute the curves Cj. In other words, the defining formula (1)
itself provides a computation-scheme for CSSC, which is parameterized by the
generating elements (generator and sequence of permutations). This underlines
the usefulness of the simple structure of CSSCs in particular with respect to
aspects of computation.

4.4 Aspects of locality

The above mentioned parameterized formula might, for example, also be used
to investigate locality properties of CSSCs by mechanical methods. The locality
properties of Hilbert curves have already been studied in great detail. As an
example for such investigations, we briefly note a result of Gotsman and Lin-
denbaum [9] for multidimensional Hilbert curves. In [9] they investigate a curve
C: {l,...,n"} = {1,...,n}" with the help of their locality measure

B(C(). CU))

Ly(C) = 2

where dy denotes the Euclidean metric. In their Theorem 3 they claim the upper
bound Ly(H}) < (r + 3)22" for any r-dimensional Hilbert curve of order k,
without precisely specifying what an r-dimensional Hilbert curve shall be. Since
the proof of their result does not utilize the special Hilbert structure of the curve,
this result can even be extended to arbitrary CSSCs.

Moreover, apart from the given locality measure L, we can consider measures
L, (with p =1 or p = 00), replacing the Euclidean distance dy in definition (2)
by the Manhattan metric d;, and the Maximum metric d.., respectively.

When making use of the special CHP-property of a class of curves one even can
get closer results. For the 2D case (see Theorem 4) Gotsman and Lindenbaum
present a result (cf. [9, Theorem 4]) which can be improved to the following
theorem. Its proof, which is based on a more detailed investigation than the one
given in Gotsman and Lindenbaum’s previous proof, can be found in [1].

Theorem 6. For the 2D Hilbert indexing H? = {Hil; | k > 1} we have

6(1-0(2") < Ly(Hif) < 6}
6(1-0(2") < L(Hil) < 6%

for all Hil; € H? with ord(Hil}) = k.

This result is completed by a result for the Manhattan metric [6, 15], which
in the above notation would be

Ly(Hil) =9 forall Hil; € H2
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5 Conclusion

There is no denying the fact that dealing with dimensions greater than 3 makes
the study of multi-dimensional structures quite hard due to the loss of geometric
intuition. In this paper we tried to provide a simple as possible mathematical
mechanism to describe and analyze space-filling Hilbert curves in arbitrary dimen-
sions. Using a formalism based on generating elements and permutations, which
completely describe whole families of Hilbert curves, we were able to discover
some nice combinatorial properties of Hilbert curves in arbitrary dimensions.
Our formalism still leaves a lot of freedom we have not made use of. So giving
up the restriction to “pure” Hilbert curves, it would be fairly straightforward
to also study generators with side-length b instead of 2 (cf. [1]). However, in
this case the formalism would become a little more complicated because there is
no longer such a simple isomorphism between corner indexings and generators.
Note that, for example, Butz [3] studied locality in multidimensional curves with
b = 3, paying less attention to a combinatorial study and structural issues of the
curves as we did. From an application point of view, it may also be important
to study non-cubic grids and the corresponding indexings. Here our formalism
in principle also works, but one has to take care of the fact that in this case
only a more restricted form of permutations applies. It would also be possible
to make use of more than one generator as we do in the Hilbert case, thus also
gaining curves with somewhat better locality properties than Hilbert ones (cf. [2,
5] for 2D and 3D cases). However, this probably would extremely complicate the
combinatorial analysis while only obtaining a modest improvement in locality
properties. Our paper lays the basis for several further research directions. So it
could be tempting to determine the number of structurally different r-dimensional
curves with Hilbert property for » > 3. Moreover, a (mechanized) analysis of
locality properties of r-dimensional (r > 3) Hilbert curves is still to be done
(cf. [15]). An analysis of the construction of more complicated curves using more
generators or different permutations for different levels remains open.
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