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Abstra
tIndexing s
hemes for grids based on spa
e-�lling 
urves (e.g., Hilbert index-ings) �nd appli
ations in numerous �elds, ranging from parallel pro
essingover data stru
tures to image pro
essing. Be
ause of an in
reasing inter-est in dis
rete multi-dimensional spa
es, indexing s
hemes for them havewon 
onsiderable interest. Hilbert 
urves are the most simple and popularspa
e-�lling indexing s
heme. We extend the 
on
ept of 
urves with Hilbertproperty to arbitrary dimensions and present �rst results 
on
erning theirstru
tural analysis that also simplify their appli
ability.We de�ne and analyze in a pre
ise mathemati
al way r-dimensionalHilbert indexings for arbitrary r � 2. Moreover, we generalize and sim-plify previous work and 
larify the 
on
ept of Hilbert 
urves for multi-dimensional grids. As we show, Hilbert indexings 
an be 
ompletely de-s
ribed and analyzed by \generating elements of order 1", thus, in 
om-parison with previous work, redu
ing their stru
tural 
omplexity de
isively.Whereas there is basi
ally one Hilbert 
urve in the 2D world, our analysisshows that there are 1536 stru
turally di�erent 3D Hilbert 
urves. Furtherresults in
lude generalizations of lo
ality results for multi-dimensional in-dexings and an easy re
ursive 
omputation s
heme for multi-dimensionalHilbert indexings.

2



Theory of Computing Systems, Vol. 33, pp. 295–312, 2000

1 Introdu
tionDis
rete multi-dimensional spa
es are of in
reasing importan
e in 
omputer s
i-en
e. They appear in various settings su
h as 
ombinatorial optimization, parallelpro
essing, image pro
essing, geographi
 information systems, data base systems,and data stru
tures. For many appli
ations it is ne
essary to number the pointsof a dis
rete multi-dimensional spa
e (whi
h, equivalently, 
an be seen as a grid)by an indexing s
heme mapping ea
h point bije
tively to a natural number in therange between 1 and the total number of points in the spa
e. Often it is desirablethat this indexing s
heme preserves some kind of lo
ality, that is, 
lose-by pointsin the spa
e are mapped to 
lose-by numbers or vi
e versa. For this purpose,indexing s
hemes based on spa
e-�lling 
urves have shown to be of high value[2, 4, 5, 6, 8, 7, 9, 11, 12, 13, 14, 15, 16, 19℄.In this paper, we study Hilbert indexings [10℄, perhaps the most popularspa
e-�lling indexing s
hemes. Properties of 2D and 3D Hilbert indexings havebeen extensively studied re
ently [5, 6, 7, 9, 12, 14, 15, 17℄. However, most ofthe work so far has fo
used on empiri
al studies. Up to now, little attention hasbeen paid to the theoreti
al study of stru
tural properties of multi-dimensionalHilbert 
urves, the fo
us of this paper. Whereas with \modulo symmetry" thereis only one 2D Hilbert 
urve, there are many possibilities to de�ne Hilbert 
urvesin the 3D setting [5, 15℄. The advantage of Hilbert 
urves is their (
omparedto other 
urves) simple stru
ture that may easily outweigh the asymptoti
allyslightly better (
on
erning 
onstant fa
tors) lo
ality properties of other spa
e-�lling 
urves. Also note that in de�ning indexing s
hemes for multi-dimensionalgrids, des
riptional simpli
ity as provided by \pure" Hilbert indexing is a desir-able property.Our results 
an shortly be sket
hed as follows. We generalize the notion ofHilbert indexings to arbitrary dimensions. We 
larify the 
on
ept of Hilbert
urves in multi-dimensional spa
es by providing a natural and simple mathe-mati
al formalism that allows 
ombinatorial studies of multi-dimensional Hilbertindexings. For reasons of (geometri
al) 
learness, we base our formalism on per-mutations instead of e.g. matri
es or other formalisms [3, 4, 5, 17℄. So we obtainthe following insight: Spa
e-�lling 
urves with Hilbert property 
an be 
ompletelydes
ribed by simple generating elements and permutations operating on them.Stru
tural questions for Hilbert 
urves in arbitrary dimensions 
an be de
ided byredu
ing them to basi
 generating elements. Putting it in 
at
hy terms, one mightsay that for Hilbert indexings what holds \in the large" (i.e., for large side-length),
an already be dete
ted \in the small" (i.e., for side-length 2). In parti
ular, thisprovides a basis for me
hanized proofs of lo
ality of 
urves with Hilbert property(
f. [15℄). In addition, this observation allows the identi�
ation of seemingly dif-ferent 3D Hilbert indexings [5℄, the generalization of a lo
ality result of Gotsmanand Lindenbaum [9℄ to a larger 
lass of multi-dimensional indexing s
hemes, andthe determination that there are exa
tly 6 � 28 = 1536 stru
turally di�erent 3D3
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Hilbert 
urves. The latter 
learly generalizes and answers Sagan's quest for de-s
ribing 3D Hilbert 
urves [17℄. Finally, we provide an easy re
ursive formula for
omputing Hilbert indexings in arbitrary dimensions and sket
h a re
ipe for howto 
onstru
t an r-dimensional Hilbert 
urve for arbitrary r in an easy way fromtwo (r � 1)-dimensional ones.As a whole, our work lays foundations for future work dealing with 
om-binatorial properties of multi-dimensional Hilbert 
urves and, in parti
ular, ame
hanized analysis of lo
ality properties of multi-dimensional Hilbert 
urves.The main fo
us of this paper, however, is to provide a theoreti
al study of ni
e
ombinatorial properties of Hilbert 
urves in arbitrary dimensions and it is not tostudy e.g. lo
ality properties in great depth, whi
h may be the subje
t of futurestudy.The paper is organized as follows. Se
tion 2 presents some basi
 fa
ts onspa
e-�lling 
urves and grid indexings and, in parti
ular, gives the 
onstru
tions
heme of 2D Hilbert 
urves. Se
tion 3 
ontains our method to des
ribe multi-dimensional Hilbert indexings by \generators" and permutations operating on agiven 
orner-indexing of a 
ube. One of our main results shows that the stru
-tural analysis of multi-dimensional Hilbert 
urves 
an be 
ompletely redu
ed tothe analysis of their (small) generating elements. In Se
tion 4 we apply themethodology of Se
tion 3 to derive several results 
on
erning the stru
tural anal-ysis and 
omputation of 
urves with Hilbert property. Finally, Se
tion 5 drawssome 
on
lusions, outlines further generalizations, and gives some dire
tions forfuture work.2 PreliminariesWe fo
us our attention on 
ubi
 grids, where, in the r-dimensional 
ase, we havenr points arranged in an r-dimensional grid with side-length n. An r-dimensional(dis
rete) 
urve C is simply a bije
tive mapping C : f1; : : : nrg ! f1; : : : ; ngr,thus providing a total ordering of the grid points. Note that, by de�nition, wedo not 
laim the 
ontinuity of a 
urve. A 
urve C is 
alled 
ontinuous if it formsa Hamilton path through the nr grid points. An r-dimensional 
ubi
 grid is saidto be of order k if it has side-length 2k. Analogously, a 
urve C has order k if itsrange is a 
ubi
 grid of order k.Fig. 1 shows the smallest 2D 
ontinuous 
urve indexing a grid of size 4. This
urve 
an be found in Hilbert's original work [10, 18℄ as a 
onstru
ting unit for awhole family of 
urves. Fig. 2 shows the general 
onstru
tion prin
iple for theseso-
alled Hilbert 
urves: For any k � 1 four Hilbert indexings of size 4k are
ombined into an indexing of size 4k+1 by rotating and re
e
ting them in su
h away that 
on
atenating the indexings yields a Hamilton path through the grid.Note that the left and the right side of the 
urve are symmetri
 to ea
h other.Thus, as indi
ated in Fig. 2, we only need to keep tra
k of the orientation of the4
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Figure 1: The generator Hil21 and its
anoni
al 
orner-indexing gHil21.
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������Figure 2: Constru
tion s
heme for the2D Hilbert indexing.edge whi
h 
ontains the start and end of the 
urve. As we will see later on, theabove rule uniquely de�nes the 2D Hilbert indexing up to global rotation andre
e
tion.One of the main features of the Hilbert 
urve is its \self-similarity". Here\self-similar" shall simply mean that the 
urve 
an be generated by putting to-gether identi
al (basi
 
onstru
tion) units, only applying rotation and re
e
tionto these units. In a sense, the Hilbert 
urve is the \simplest" self-similar, re
ur-sive, lo
ality-preserving indexing s
heme for square meshes of size 2k � 2k.3 Formalizing Hilbert 
urves in r dimensionsIn this se
tion, we generalize the 
onstru
tion prin
iple of 2D Hilbert 
urvesto arbitrary dimensions in a rigorous, mathemati
ally pre
ise way. We restri
tattention to indexing s
hemes of 
ubes with side-lengths 2k for any natural num-ber k, although generalizations are straightforward (see Se
tion 5). We generatean r-dimensional 
urve �lling a 
ubi
 grid with side-length 2k with a sequen
e of2r sub
urves �lling grids with side-length 2k�1 ea
h. For the generating sub
urveswe 
laim a 
ertain similarity as given by the 2D Hilbert indexing. By \similar"we mean that the sub
urves 
an be transformed by a symmetry mapping (re
e
-tion or rotation) into ea
h other. We need a 
ertain formalism to express thesesymmetry mappings. This, for example, 
an be done by means of permutations.Fixing a 
ertain indexing of the 
orners in a multi-dimensional grid, su
h a sym-metry transformation 
an be expressed by the a
tion of a permutation on thegiven indexing. This is one of the most intuitive approa
hes to des
ribe su
hautomorphisms on the grid. Furthermore, there turns out to be a very simple re-lation between 
urves of the lowest order possible and su
h 
orner-indexings. Westrongly believe that this at �rst sight maybe strange formalism used by us wasthe basis for deriving stru
tural results on e.g. 3D Hilbert indexings as presentedin Se
tion 4. So we 
an hardly imagine a 
omparatively simple presentation of allstru
turally di�erent 3D Hilbert 
urves as given in Table 1 (see Subse
tion 4.1)using other formalisms. 5
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3.1 Classes of Self-Similar Curves and their generatorsLet Vr := fx1x2 � � �xr�1xr j xi 2 f0; 1g g be the set of all 2r 
orners of an r-dimensional 
ube 
oded in binary. Moreover, let I : Vr �! f1; : : : ; 2rg denotean arbitrary indexing of these 
orners. To des
ribe the orientation of sub
urvesinside a 
urve of higher order, we want to use symmetry mappings, whi
h 
an beexpressed via suitable permutations operating on su
h 
orner-indexings. Observethat any r-dimensional 
urve C1 of order 1 naturally indu
es an indexing ofthese 
orners (see Fig. 1 and Fig. 3). We 
all the obtained 
orner-indexing the
anoni
al one and denote it by fC1 : Vr �! f1; : : : ; 2rg. Furthermore, let WI� � Sym(2r)� denote the group of all permutations (operating on I) that des
riberotations and re
e
tions of the r-dimensional 
ube. In other words, WI is the setof all permutations that preserve the neighborhood-relations n(i; j) of the 
ornerindexing I:WI := �� 2 Sym(2r) : n(i; j) = n(�(i); �(j)) 8i; j 2 f1; : : : ; 2rg	:For a given permutation � 2 WI, we sometimes write (� : I) in order to emphasizethat � is operating on a 
ube with 
orner-indexing I. The point here is that on
ewe have �xed a 
ertain 
orner-indexing I, the set WI will provide all ne
essarytransformations to des
ribe a 
onstru
tion prin
iple of how to generate 
urves ofhigher order by pie
ing together a suitable 
urve of lower order. Obviously ea
hpermutation (� : I) a
ting on a given 
orner-indexing I 
anoni
ally indu
es abije
tive mapping on a 
ubi
 grid of order k. In the following we do not distinguishbetween a permutation and the 
orresponding mapping on a grid.We partition an r-dimensional 
ubi
 grid of order k into 2r sub
ubes of or-der k � 1. For ea
h x1 � � �xr 2 Vr we therefore setp(k)(x1���xr) := (x1 � 2k�1; : : : ; xr � 2k�1) 2 f0; : : : ; 2k � 1g � : : :� f0; : : : ; 2k � 1gto be the \lower-left 
orner" of su
h a sub
ube. Let Ck�1 be an r-dimensional
urve of order k � 1 (k � 2). Our goal is to de�ne a \self-similar" 
urve Ck oforder k by putting together 2r pie
es of type Ck�1. Let I : Vr �! f1; : : : ; 2rg bea 
orner-indexing. We intend to arrange the 2r sub
urves of type Ck�1 \along"I. The position of the i0-th (where i0 2 f1; : : : ; 2rg) sub
urve inside Ck 
an for-mally be des
ribed with the help of the grid-points p(k)(x1���xr). Bearing in mind the
lassi
al 
onstru
tion prin
iple for the 2D Hilbert indexing, the orientation of the
onstru
ting 
urve Ck�1 inside Ck 
an be expressed by using symmetri
 trans-formations (that is re
e
tions and rotations). For any sequen
e of permutations�1; : : : ; �2r 2 WI we therefore de�neCk(i) := (�i0 : I) Æ Ck�1 �i mod (2k�1)r�+ p(k)I�1(i0); (1)where i 2 f1; : : : ; (2k)rg and i0 = (i � 1) div (2k�1)r + 1. The geometri
 in-tuition behind is that the 
urve Ck 
an be partitioned into 2r 
omponents of6
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the form Ck�1 (re
e
ted or rotated in a suitable way). These sub
urves are ar-ranged inside Ck \along" the given 
orner-indexing I. The orientation of thei0-th sub
urve inside Ck is des
ribed by the e�e
t of �i0 operating on I.De�nition 1. Whenever two r-dimensional 
urves Ck�1 of order k�1 and Ck oforder k satisfy equation (1) for a given sequen
e of permutations �1; : : : ; �2r 2 WI(operating on the 
orner-indexing I : Vr �! f1; : : : ; 2rg), we writeCk�1 I(�1;::: ;�2r )� Ckand 
all Ck�1 the 
onstru
tor of Ck.Our �nal goal is to iterate this pro
ess starting with a 
urve C1 of order 1.It's only natural and in our opinion \preserves the spirit of Hilbert" to �x the
orner-indexing a

ording to the stru
ture of the de�ning 
urve C1. Hen
e, in thissituation we 
an spe
ify our I to be the 
anoni
al 
orner-indexing fC1. By su
-
essively repeating the 
onstru
tion prin
iple in equation (1) k times, we obtaina 
urve of order k.De�nition 2. Let C = f Ck j k � 1 g be a family of r-dimensional 
urves oforder k. We 
all C a Class of Self-Similar Curves (CSSC) if there exists a sequen
eof permutations �1; : : : ; �2r 2 WfC1 (operating on the 
anoni
al 
orner-indexingfC1) su
h that for ea
h 
urve Ck it holds thatC1 fC1(�1;::: ;�2r ) � C2 fC1(�1;::: ;�2r ) � � � � fC1(�1;::: ;�2r ) � Ck�1 fC1(�1;::: ;�2r ) � Ck:In this 
ase, C1 is 
alled the generator of the CSSC C and we setH� C1; (�1; : : : ; �2r) � := f Ck j k � 1 gas the CSSC generated by C1 and �1; : : : ; �2r . A CSSC C = f Ck j k � 1 g is
alled Class with Hilbert Property (CHP) if all 
urves Ck are 
ontinuous.Note that the CSSC H�C1; (�1; : : : ; �2r) � is well-de�ned, be
ause any CSSCis uniquely determined by its generator C1 and the 
hoi
e of the permutations�1; : : : ; �2r 2 WfC1 . The nomen
lature \Curve with Hilbert Property" is due tothe fa
t that the 
onstru
ting prin
iple for a CHP grew out of the 
lassi
al onefor 2D Hilbert 
urves. Our 
on
ept for multi-dimensional CHPs only makes useof the very essential tools whi
h 
an be found in Hilbert's 
ontext (
f. [10℄) asrotation and re
e
tion. We deliberately avoid more 
ompli
ated stru
tures (e.g.,the use of di�erent sequen
es of permutations in ea
h indu
tive step, or the use ofseveral generators for the 
onstru
ting prin
iple) in order to maintain 
on
eptualsimpli
ity and ease of 
onstru
tion and analysis. However, the theory whi
h wedevelop in this paper doesn't ne
essarily restri
t to the 
ontinuous 
ase. Thatis the reason why all our de�nitions and theorems in Subse
tion 3.2 are held in7
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the more general setting of non-
ontinuous 
urves. In Subse
tion 3.2 we pro-vide a ne
essary and suÆ
ient 
ondition on the generating elements of a CSSC(generator and sequen
e of permutations) su
h that the whole family 
onsists of
ontinuous 
urves only, i.e., is a CHP. We end this subse
tion with an example.Example. One easily 
he
ks that the 
lassi
al 2D Hilbert indexing 
an be de-s
ribed via H� Hil21; ((2 4); id; id; (1 3)) � = fHil2k j k � 1 g;where the generator Hil21 is given in Fig. 1.As Theorem 4 will show, this is the only CHP of dimension 2 \modulo sym-metry," whi
h, on
e again, justi�es the naming \Curve with Hilbert Property".3.2 Disturbing the generator of a CSSCIn this subse
tion, we analyze the e�e
ts of disturbing the generator of a CSSCby a symmetri
 mapping. We will see that any disturban
e of the generatorwill be hereditary to the whole CSSC in a very 
anoni
al way. And also theother way round: if two di�erent CSSCs show a 
ertain similarity in one of theirmembers, this similarity 
an already be found in the stru
ture of the 
orrespond-ing generators. We illustrate this by the following diagram. Given two CSSCsH� C1; (�1; : : : ; �2r) � = fCk j k � 1g and H�D1; (�1; : : : ; �2r) � = fDk j k � 1g,respe
tively.1 Suppose there is a similarity at a 
ertain stage of the 
onstru
-tion, i.e., for some k0 the 
urves Ck0 and Dk0 
an be obtained from ea
h otherby a similarity transformation �. Can we 
on
lude a verti
al link between the
urves of other orders? The investigations in this se
tion will show that the innerstru
ture of CSSCs are strong enough to yield the same behavior at the stageof any order. As a 
onsequen
e, it will be suÆ
ient to analyze the generatingelements of a CSSC. Sin
e all the information is en
oded in the generator and thede�ning permutations, questions like 
ontinuity of a CSSC, stru
tural similaritywith other CSSCs 
an be answered by 
onsidering the generating elements only.C1 fC1(�1;::: ;�2r ) � C2 fC1(�1;::: ;�2r ) � � � � fC1(�1;::: ;�2r ) � Ck????y� � ????y� � ????y� � ????y�D1 fD1(�1;::: ;�2r ) � D2 fD1(�1;::: ;�2r ) � � � � fD1(�1;::: ;�2r ) � Dk1Note that the � 's used in the de�nition of both CSSCs yield 
ompletely di�erent automor-phisms on the grid. Whereas in the �rst 
ase they refer to the 
orner-indexing fC1, in the se
ond
ase they a
t on the 
orner-indexing fD1, given by the generator D1.8
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We split the proof of the main theorem of this se
tion into several steps, sin
eea
h of these already 
ontains some ni
e stru
tural behavior of CSSCs. As a �rststep, we make a simple observation 
on
erning the behavior of the 
onstru
tionprin
iple of De�nition 1 under the \symmetri
 disturban
e" of a 
onstru
tor:Lemma 1. Let Ck�1 and Ck be 
urves of order k�1 and k, respe
tively. SupposeCk�1 is the 
onstru
tor of Ck, i.e., Ck�1 I(�1 ;::: ;�2r )� Ck, for any sequen
e ofpermutations �1; : : : ; �2r 2 WI (a
ting on a given 
orner-indexing I). Then forarbitrary � 2 WI we have(� : I) Æ Ck�1 I(�1Æ��1;::: ;�2r Æ��1)� Ck:Proof. Sin
e Ck�1 is the 
onstru
tor of Ck, by De�nition 1 we have:Ck(i) = (�i0 : I) Æ Ck�1 �i mod (2k�1)r�+ p(k)I�1(i0)= (�i0 : I) Æ (��1 : I) Æ (� : I) Æ Ck�1 �i mod (2k�1)r�+ p(k)I�1(i0)= (�i0 Æ ��1 : I) Æ �(� : I) Æ Ck�1� �i mod (2k�1)r�+ p(k)I�1(i0) ;where i 2 f1; : : : ; (2k)rg and i0 = (i � 1) div (2k�1)r + 1, proving the 
laim byDe�nition 1.Whereas, by Lemma 1, we investigated the in
uen
e of disturbing the 
on-stru
tor, we now, in a se
ond step, analyze how transforming the underlying
orner-indexing in
uen
es the 
onstru
tion prin
iple. We will need su
h a result,sin
e two di�erent CSSCs (by de�nition) 
ome up with two di�erent 
orner-indexings, ea
h of whi
h given by the underlying generator.Lemma 2. Given the assumptions of Lemma 1 (that is: Ck�1 I(�1 ;::: ;�2r ) � Ckfor two 
urves Ck�1 and Ck of su

essive order), then for arbitrary � 2 WI andthe modi�ed 
orner-indexing K := ��1 Æ I with � = (� : I) = (� : K) we have2Ck�1 K(�1Æ�;::: ;�2rÆ�)� � Æ Ck :Proof. First we dedu
e a simple transformation-rule for permutations out of ourgiven relation K = ��1ÆI. The e�e
t of a given permutation � 2 WI a
ting on Iis equivalent to the e�e
t of the transformed permutation ��1 Æ � Æ � operatingon the transformed 
orner-indexing K, i.e. (� : I) = (��1 Æ � Æ � : K). Setting� = �, this parti
ularly shows (� : I) = (� : K) = �.By assumption, Ck�1 is the 
onstru
tor of Ck whi
h for all i 2 f1; : : : ; (2k)rgand i0 = (i� 1) div (2k�1)r + 1 yieldsCk(i) = (�i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)I�1(i0)) � Æ Ck(i) = � Æ �(�i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)I�1(i0)�= � Æ (�i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)I�1(�(i0))2The fa
t that the 
orner-indexing is disturbed by ��1 instead of � is due to te
hni
alreasons only. 9



Theory of Computing Systems, Vol. 33, pp. 295–312, 2000

where the last equation is true, be
ause the e�e
t of the symmetry mapping �on a CSSC-
urve Ck of order k 
an be split into its e�e
t on the 2r sub
urvesof order k � 1 and the e�e
t on the arrangement of these sub
urves inside Ck.Whereas the i0-th sub
urve of Ck lies next to the 
orner I�1(i0), the position ofthe i0-th sub
urve of � Æ Ck is transformed a

ording to �. Therefore its newposition is given by the 
orner I�1(�(i0)). Thus,� Æ Ck(i) = (� Æ �i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)(I�1Æ�)(i0)= (�i0 Æ � : K) Æ Ck�1 �i mod (2k�1)r� + p(k)K�1(i0);by applying the transformation-rule treated at the beginning with � = �Æ �i0. ByDe�nition 1 the last equation proves our 
laim.Lemma 1 and 2 now allow the proof of the main result of this se
tion. Forits illustration we refer to the diagram at the beginning of this se
tion. Do alsore
all the point made in the footnote there.Theorem 3. Let C1 be the generator of the CSSC H�C1; (�1; : : : ; �2r) � = fCk jk � 1g and D1 the generator of the CSSC H�D1; (�1; : : : ; �2r) � = fDk j k � 1g.For an arbitrary permutation � 2 WfC1 and the 
orresponding symmetri
 mapping� = (� : fC1) = (� : fD1), the following statements are equivalent:(i) � Æ Ck0 = Dk0 for some k0 � 1.(ii) � Æ Ck = Dk for all k � 1.Proof. (ii)) (i) is trivial. For (i)) (ii) we �rst show that statement (ii) is truefor the generators C1 and D1: If k0 > 1 we 
an divide the 
ubi
 grid of order k0into 2r subgrids of order k0 � 1. By the 
onstru
tion prin
iple for CSSCs, the
urves Ck0 andDk0 traverse these subgrids \along" the 
anoni
al 
orner-indexingsfC1 resp. fD1. Sin
e, by assumption, �ÆCk0 = Dk0, the 
orresponding relation alsoholds true for the 
orner-indexings fC1 and fD1, whi
h �nally yields the validity ofthe equation � Æ C1 = D1, be
ause of the isomorphisms C1 ' fC1 resp. D1 ' fD1.We pro
eed proving (ii) by indu
tion on k. Assuming that Dk = � Æ Ckwe show this relation for k + 1 by applying Lemma 1 and Lemma 2. Sin
efCk j k � 1g is a CSSC, we getCk fC1(�1;::: ;�2r ) � Ck+1Lemma 1=) � Æ Ck| {z }=Dk fC1(�1Æ��1;::: ;�2r Æ��1) � Ck+1Lemma 2=) Dk fD1(�1;::: ;�2r ) � � Æ Ck+1 ;10
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where the last relation makes use of fD1 = ��1 ÆfC1, whi
h we immediately obtainfrom the given equation D1 = � ÆC1.3 This implies Dk+1 = � ÆCk+1 be
ause ofthe CSSC-property of fDk j k � 1g.In parti
ular, the result of Theorem 3 implies that any questions 
on
erningthe stru
tural similarity of two CSSCs 
an be redu
ed to the analysis of theirgenerators. Any symmetri
 
orresponden
e between two CSSCs in the large 
anbe dete
ted in the small, that is, in the stru
ture of their generators. Thus, inorder to give a 
lassi�
ation of CSSCs where two families of 
urves that are equalmodulo symmetry (rotation and re
e
tion) are not distinguished, we need onlydistinguish between generators whi
h di�er modulo symmetry. We may thereforeex
lusively restri
t our attention to the analysis of di�erent types of generatorsand of suitable sequen
es of permutations. So, our result greatly simpli�es the
omplete 
lassi�
ation and the 
onstru
tion of all stru
turally di�erent CSSCs.Moreover, it lays the foundations of a me
hanized analysis of, for example, lo
alityproperties of multi-dimensional Hilbert indexings (
f. [15℄).4 Appli
ations: 
omputing and analyzing CHPsFirst in this se
tion, we atta
k a 
lassi�
ation of all stru
turally di�erent CHPsfor higher dimensions. Whereas we 
an provide 
on
rete 
ombinatorial resultsfor the 2D and 3D 
ases, the high-dimensional 
ases appear to be mu
h morediÆ
ult. The basi
 tool for su
h an analysis, however, is given by Theorem 3. Inthe following subse
tions we sket
h how to 
onstru
t Hilbert indexings in higherdimensions and thus 
larify the existen
e of su
h obje
ts in arbitrary dimensions.Also in this se
tion, we dis
uss 
omputational aspe
ts of Hilbert indexings and�nally we 
on
lude with lo
ality properties of su
h 
urves. The general stru
turalbehavior of CHPs is suÆ
ient to extend some results provided in previous work,su
h as Gotsman and Lindenbaum [9℄.4.1 Classi�
ation Theorems for the two and three dimen-sional 
asesOur �rst theorem investigates the two-dimensional setting. The result givenbelow justi�es the naming \
lass with Hilbert property" (CHP). Also, note thatthe subsequent proofs make de
isive use of the geometri
 
learness provided byour formalism.Theorem 4. The 
lassi
al 2D Hilbert indexing H� Hil21; ((2 4); id; id; (1 3)) � isthe only CHP of dimension 2 modulo symmetry.3A disturban
e by � implies a transformation of the 
orner-indexings by ��1, whi
h 
an be
he
ked.easily. 11
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generator Hil31.CFigure 3: Continuous 3D generators Hil31.x and their 
anoni
al 
orner-indexingsgHil31.x.Proof. Due to Theorem 3 it suÆ
es to show that Hil21 is the only 
ontinuous2D generator, whi
h is obvious. In addition, we have to 
he
k whether there isanother sequen
e of permutations su
h that 4 generators Hil21 
an be arranged ina grid of order 2 along the 
anoni
al 
orner-indexing gHil21 in a 
ontinuous way. Asimple 
ombinatorial 
onsideration shows that no other sequen
e of permutationsyields a 
ontinuous 
urve of order 2 whose starting- and endpoints are lo
ated at
orners of the grid. However, any 
onstru
tor for a 
ontinuous 
urve of higherorder must have the property that both starting- and endpoint are 
orner-pointsof the grid.What about the 3D 
ase? Are there any di�eren
es 
on
erning the amountof possible CHPs? The analysis of the \Simple Indexing S
hemes" (whi
h arerelated to our CHPs) in Cho
hia and Cole [5℄ already shows that the numberof CHPs in the 3D 
ase grows drasti
ally 
ompared to the 2D setting. Lots of\Simple Indexing S
hemes" in [5℄ now, by our analysis, turn out to be identi
almodulo symmetry. Our goal is to spe
ify all stru
turally di�erent CHPs, that is,all CHPs that are not identi
al modulo symmetry (rotation and re
e
tion). Sin
e,by Theorem 3, we �nd any symmetri
 similarities of two CHPs in the stru
ture oftheir generating elements, we may restri
t our attention to the investigation of thegenerators and all suitable sequen
es of permutations. In addition, Lemma 1 andLemma 2 
an be seen as helpful tools to des
ribe symmetri
ally disturbed CHPsin a very 
onstru
tive way. They at least provide formulas of how to 
al
ulatethe sequen
e of permutations for a disturbed CHP out of the given sequen
e ofthe original CHP. The following theorem also generalizes and answers work ofSagan [17℄.Theorem 5. For the 3D 
ase there are 6 � 28 = 1536 stru
turally di�erent (thatis: not identi
al modulo re
e
tion and rotation) CHPs. These types are listed inTable 1.Proof. Theorem 3 says that we 
an restri
t our attention to 
he
king any 
on-tinuous 
urves of order 1 whi
h are di�erent modulo symmetry. Given su
h a
ontinuous generator C, the total amount of CHPs whi
h 
an be 
onstru
ted by12
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generator version �1 �2 �3 �4(2 8)(3 5) / (3 7)(4 8) / (3 7)(4 8) / (1 3)(6 8) /(a) (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 8 4)(3 7 5) (1 3)(2 4)(5 7)(6 8)(2 8)(3 5) / (3 7)(4 8) / id / (1 7 3)(4 6 8) /(b) (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 4)(5 7) (1 7 5 3)(2 8 6 4)Hil31.A (2 8)(3 5) / (3 7)(4 8) / id / (1 7)(4 6) /(
) (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 4)(5 7) (1 7 5)(2 6 4)(2 8)(3 5) / (3 7)(4 8) / (3 7)(4 8) / (1 3)(6 8) /(d) (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 8 4)(3 7 5) (1 3)(2 4)(5 7)(6 8)(2 8)(5 7) / id / (3 5)(6 8) / (2 8)(5 7) /(a) (2 6 8)(3 5 7) (2 6)(3 7) (2 8 6)(3 7 5) (2 6 8)(3 5 7)Hil31.B (2 8)(5 7) / id / (3 5)(6 8) / (3 5)(6 8) /(b) (2 6 8)(3 5 7) (2 6)(3 7) (2 8 6)(3 7 5) (2 8 6)(3 7 5)generator version �5 �6 �7 �8(1 3)(6 8) / (1 5)(2 6) / (1 5)(2 6) / (1 7)(4 6) /(a) (1 3)(2 4)(5 7)(6 8) (1 5 7)(2 4 6) (1 5 7)(2 4 6) (1 7 5)(2 6 4)(1 3 5)(2 6 8) / id / (1 5)(2 6) / (1 7)(4 6) /(b) (1 3 5 7)(2 4 6 8) (2 4)(5 7) (1 5 7)(2 4 6) (1 7 5)(2 6 4)Hil31.A (2 8)(3 5) / id / (1 5)(2 6) / (1 7)(4 6) /(
) (2 4 8)(3 5 7) (2 4)(5 7) (1 5 7)(2 4 6) (1 7 5)(2 6 4)(1 3 5)(2 6 8) / id / (1 5)(2 6) / (1 7)(4 6) /(d) (1 3 5 7)(2 4 6 8) (2 4)(5 7) (1 5 7)(2 4 6) (1 7 5)(2 6 4)(1 3)(4 6) / (1 3)(4 6) / id / (1 7)(2 4) /(a) (1 3 7)(2 4 6) (1 3 7)(2 4 6) (2 6)(3 7) (1 7 3)(2 6 4)Hil31.B (1 7)(2 4) / (1 3)(4 6) / id / (1 7)(2 4) /(b) (1 7 3)(2 6 4) (1 3 7)(2 4 6) (2 6)(3 7) (1 7 3)(2 6 4)Table 1: Des
ription of all 3-dimensional CHPs.

13
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Hil31.A-version (a) Hil31.A-version (b) Hil31.A-version (
)
Hil31.A-version (d) Hil31.B-version (a) Hil31.B-version (b)Figure 4: Constru
tion prin
iples for CHPs with generators Hil31.A and Hil31.B.C is given by all possibilities of pie
ing together 8 (rotated or re
e
ted) versions ofC (\sub
urves") along its 
anoni
al 
orner-indexing eC. By exhaustive sear
h, weget that there are 3 di�erent (modulo symmetry) types of 
ontinuous generators,namely Hil31.A, Hil31.B and Hil31.C (see Fig. 3). As des
ribed above, we now haveto 
he
k whether there are 
ontinuous arrangements of these generators alongtheir 
anoni
al 
orner-indexings. Beginning with type A, an exhaustive 
ombi-natorial sear
h yields that there are 4 possible 
ontinuous formations of Hil31.Aalong gHil31.A. All possibilities are shown in Fig. 4, where the orientation of ea
hsub
ube is given by the position of an edge (drawn in bold lines). For ea
h sub-
ube there are two symmetry mappings whi
h yield possible arrangements for thegenerator within su
h a subgrid. The permutations expressing these mappingsare listed in Table 1.Analogously, we �nd out the possible arrangements for generator type B. Notethat there are no more than 2 di�erent 
ontinuous arrangements of this generatoralong its 
anoni
al 
orner-indexing. Finally we easily 
he
k that Hil31.C 
annoteven be the 
onstru
tor of a 
ontinuous 
urve of order 2. Table 1 thus yields thatthere are exa
tly 4 � 28 + 2 � 28 = 6 � 28 stru
turally di�erent CHPs.A 
omplete 
lassi�
ation of the high-dimensional 
ases appears to be mu
hmore diÆ
ult. We end this se
tion by sket
hing several further results based onour 
hara
terization of 
urves with Hilbert property.

14
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�1 = (2 16)(3 13)(6 12)(7 9)�2 = (3 15)(4 16)(5 9)(6 10)�3 = �2�4 = (1 3 13 11 9 7)(2 4 14 12 10 8)(5 15)(6 16)�5 = �4�6 = (1 5 13 9)(2 6 14 10)(3 11 15 7)(4 12 16 8)�7 = �6�8 = (1 7)(4 6)(10 16)(11 13)�9 = �8�10 = (1 9 13 5)(2 10 14 6)(3 7 15 11)(4 8 16 12)�11 = �10�12 = (1 11)(2 12)(3 5 7 9 15 13)(4 6 8 10 16 14)�13 = �12�14 = (1 13)(2 14)(7 11)(8 12)�15 = �14�16 = (1 15)(4 14)(5 11)(8 10)Figure 5: Constru
ting elements for a 4-D CHP (generator Hil41 and permuta-tions).4.2 Constru
tion of an r-dimensional Hilbert 
urveAs already mentioned before, CHPs seem to outperform many other spa
e-�lling
urves 
on
erning their properties important for appli
ations like data stru
turesor parallel pro
essing (e.g. 
omputational e�ort, lo
ality, et
.). Sin
e su
h qual-ities might depend only weakly on the inside stru
ture of a CHP, it, however,seems to be important to have at least one easily 
onstru
tible CHP for ea
hdimension. Without giving an expli
it proof here, we just indi
ate how the 
on-stru
tion of a high-dimensional CHP 
an be done indu
tively in an easy way: A
ontinuous generator of dimension r 
an be derived indu
tively simply by \joiningtogether" two 
ontinuous generators of dimension r � 1. A similar 
onsideration�nally helps to spe
ify the suitable permutations in order to obtain indexings ofhigher order. As an example we give a CHP of dimension 4, whose generatorHil41 is 
onstru
ted by joining together two generators Hil31, version (a) (
f. Fig-ure 3). The generator Hil41 and a suitable sequen
e of permutations are shown inFig. 5. Note that this 
onstru
tion prin
iple 
an be extended to obtain Hilbertindexings in arbitrary dimensions in an expressive, easy, and 
onstru
tive way:Following the 
onstru
tion prin
iple of Hil31, version (a), �rst pass through anr� 1-dimensional stru
ture, then in \two steps" do a 
hange of dimension in therth dimension, and �nally again pass through an r � 1-dimensional stru
ture.This method applies to �nding the generators as well as to �nding the permuta-tions. Thus the 
onstru
tion prin
iple of Hil31, version (a) in a sense is iteratedr � 2 times in order to generate an indexing of dimension r.
15
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4.3 Re
ursive 
omputation of CSSCsNote that whenever a CSSC C = fCk j k � 1g is expli
itly given by its generatorand the sequen
e of permutations, we may use the re
ursive formula (1) of Sub-se
tion 3.1 to 
ompute the 
urves Ck. In other words, the de�ning formula (1)itself provides a 
omputation-s
heme for CSSC, whi
h is parameterized by thegenerating elements (generator and sequen
e of permutations). This underlinesthe usefulness of the simple stru
ture of CSSCs in parti
ular with respe
t toaspe
ts of 
omputation.4.4 Aspe
ts of lo
alityThe above mentioned parameterized formula might, for example, also be usedto investigate lo
ality properties of CSSCs by me
hani
al methods. The lo
alityproperties of Hilbert 
urves have already been studied in great detail. As anexample for su
h investigations, we brie
y note a result of Gotsman and Lin-denbaum [9℄ for multidimensional Hilbert 
urves. In [9℄ they investigate a 
urveC : f1; : : : ; nrg ! f1; : : : ; ngr with the help of their lo
ality measureL2(C) := maxi;j2f1;::: ;nrg d2(C(i); C(j))rji� jj ; (2)where d2 denotes the Eu
lidean metri
. In their Theorem 3 they 
laim the upperbound L2(Hrk) � (r + 3) r2 2r for any r-dimensional Hilbert 
urve of order k,without pre
isely spe
ifying what an r-dimensional Hilbert 
urve shall be. Sin
ethe proof of their result does not utilize the spe
ial Hilbert stru
ture of the 
urve,this result 
an even be extended to arbitrary CSSCs.Moreover, apart from the given lo
ality measure L2 we 
an 
onsider measuresLp (with p = 1 or p = 1), repla
ing the Eu
lidean distan
e d2 in de�nition (2)by the Manhattan metri
 d1, and the Maximum metri
 d1, respe
tively.When making use of the spe
ial CHP-property of a 
lass of 
urves one even 
anget 
loser results. For the 2D 
ase (see Theorem 4) Gotsman and Lindenbaumpresent a result (
f. [9, Theorem 4℄) whi
h 
an be improved to the followingtheorem. Its proof, whi
h is based on a more detailed investigation than the onegiven in Gotsman and Lindenbaum's previous proof, 
an be found in [1℄.Theorem 6. For the 2D Hilbert indexing H2 = fHil2k j k � 1g we have6(1� O(2�k)) � L2(Hil2k) � 6126(1� O(2�k)) � L1(Hil2k) � 625 :for all Hil2k 2 H2 with ord(Hil2k) = k.This result is 
ompleted by a result for the Manhattan metri
 [6, 15℄, whi
hin the above notation would beL1(Hil2k) = 9 for all Hil2k 2 H2:16
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5 Con
lusionThere is no denying the fa
t that dealing with dimensions greater than 3 makesthe study of multi-dimensional stru
tures quite hard due to the loss of geometri
intuition. In this paper we tried to provide a simple as possible mathemati
alme
hanism to des
ribe and analyze spa
e-�lling Hilbert 
urves in arbitrary dimen-sions. Using a formalism based on generating elements and permutations, whi
h
ompletely des
ribe whole families of Hilbert 
urves, we were able to dis
oversome ni
e 
ombinatorial properties of Hilbert 
urves in arbitrary dimensions.Our formalism still leaves a lot of freedom we have not made use of. So givingup the restri
tion to \pure" Hilbert 
urves, it would be fairly straightforwardto also study generators with side-length b instead of 2 (
f. [1℄). However, inthis 
ase the formalism would be
ome a little more 
ompli
ated be
ause there isno longer su
h a simple isomorphism between 
orner indexings and generators.Note that, for example, Butz [3℄ studied lo
ality in multidimensional 
urves withb = 3, paying less attention to a 
ombinatorial study and stru
tural issues of the
urves as we did. From an appli
ation point of view, it may also be importantto study non-
ubi
 grids and the 
orresponding indexings. Here our formalismin prin
iple also works, but one has to take 
are of the fa
t that in this 
aseonly a more restri
ted form of permutations applies. It would also be possibleto make use of more than one generator as we do in the Hilbert 
ase, thus alsogaining 
urves with somewhat better lo
ality properties than Hilbert ones (
f. [2,5℄ for 2D and 3D 
ases). However, this probably would extremely 
ompli
ate the
ombinatorial analysis while only obtaining a modest improvement in lo
alityproperties. Our paper lays the basis for several further resear
h dire
tions. So it
ould be tempting to determine the number of stru
turally di�erent r-dimensional
urves with Hilbert property for r > 3. Moreover, a (me
hanized) analysis oflo
ality properties of r-dimensional (r > 3) Hilbert 
urves is still to be done(
f. [15℄). An analysis of the 
onstru
tion of more 
ompli
ated 
urves using moregenerators or di�erent permutations for di�erent levels remains open.Referen
es[1℄ J. Alber. Lo
ality properties of dis
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