
LCNS, Vol 2932, pp. 349–360, Springer 2004

Avoiding Forbidden Submatrices by

Row Deletions⋆

Sebastian Wernicke, Jochen Alber, Jens Gramm, Jiong Guo, and
Rolf Niedermeier

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Sand 13, D-72076 Tübingen, Fed. Rep. of Germany

{wernicke,alber,gramm,guo,niedermr}@informatik.uni-tuebingen.de

Abstract. We initiate a systematic study of the Row Deletion(B)
problem on matrices: For a fixed “forbidden submatrix” B, the question
is, given an input matrix A (both A and B have entries chosen from a
finite-size alphabet), to remove a minimum number of rows such that A

has no submatrix which is equivalent to a row or column permutation
of B. An application of this question can be found, e.g., in the construc-
tion of perfect phylogenies. Establishing a strong connection to variants
of the NP-complete Hitting Set problem, we show that for most ma-
trices B Row Deletion(B) is NP-complete. On the positive side, the
relation with Hitting Set problems yields constant-factor approxima-
tion algorithms and fixed-parameter tractability results.

1 Introduction

Forbidden subgraph problems play an important role in graph theory and algo-
rithms (cf., e.g., [1, Chapter 7]). For instance, in an application concerned with
graph-modeled clustering of biological data [9] one is interested in modifying a
given graph by as few edge deletions as possible such that the resulting graph
consists of a disjoint union of cliques (a so-called cluster graph). Exact (fixed-
parameter) algorithms to solve this NP-complete problem make use of the fact
that a graph is a cluster graph iff it contains no vertex-induced path of three
vertices as a subgraph [3, 4]. There is a rich literature dealing with such “graph
modification problems,” cf., e.g., [6]—many problems here being NP-complete.

By way of contrast, in this paper we start the so far seemingly widely ne-
glected investigation of forbidden submatrix problems from an algorithmic point
of view. Here, given an input matrix A and a fixed matrix B, the basic question
is whether B is induced by A. This means that a permutation B′ of B—that is, B

can be transformed into B′ by a finite series of row and column swappings—can
be obtained from A by row and column deletions. This work studies correspond-
ing “matrix modification problems” where, given A and a fixed B, we are asked

⋆ Supported by the Deutsche Forschungsgemeinschaft (DFG), project PEAL (param-
eterized complexity and exact algorithms), NI 369/1; project OPAL (optimal solu-
tions for hard problems in computational biology), NI 369/2; junior research group
“PIAF” (fixed-parameter algorithms), NI 369/4.

LCNS, Vol 2932, pp. 349–360, Springer 2004

to remove as few rows from A as possible such that the resulting matrix no longer
induces B. Forbidden submatrix problems, e.g., are motivated by questions of
computational biology concerning the construction of “perfect phylogenies” [8,
10]. Here, a binary input matrix A allows for a perfect phylogeny iff A does not
induce the submatrix B consisting of the rows (1, 1), (1, 0), and (0, 1) (see [8, 10]
for details).

We initiate a systematic study of matrix modification problems concerning
the complexity of row deletion for forbidden submatrices. Our main result is to
establish a very close link between many of these problems and restricted versions
of the NP-complete Hitting Set problem [2]. We describe and analyze struc-
tures of the forbidden submatrix B which make the corresponding row deletion
problem “equivalent” to particular versions of Hitting Set. On the negative
side, this implies NP-completeness for most row deletion matrix modification
problems, holding already for binary alphabet. On the positive side, we can also
show that approximation and fixed-parameter tractability results for Hitting
Set carry over to the corresponding row deletion problems. To the best of our
knowledge, no such systematic study has been undertaken so far. We are only
aware of the related work of Klinz et al. [5] dealing with the permutation of
matrices (without considering row deletions) in order to avoid forbidden subma-
trices. There, however, they consider the case of permuting rows and columns of
the “big” matrix A to obtain a matrix A′ such that A′ cannot be transformed
into a fixed matrix B by row and column deletions. Among other things, they
show NP-completeness for the general decision problem.

The paper is structured as follows. In Section 2, we start with the basic
definitions and some easy observations. After that, in Section 3, the main results
of the work are presented, giving (or sketching) several “parameter-preserving
reductions” (the core tool of this paper) from Hitting Set problems to Row
Deletion(B) for various types of the forbidden submatrix B. Then, in Section 4
we show how Row Deletion(B) can be solved using algorithms for Hitting
Set problems, again using a parameter-preserving reduction. Finally, we end
with some concluding remarks and open problems in Section 5.

Due to the lack of space, several proofs have been omitted or shortened in
this article, more details can be found in [11].

2 Definitions and Preliminaries

All matrices in this work have entries from an alphabet Σ of fixed size ℓ; we
call these matrices ℓ-ary . Note, however, that all computational hardness results
already hold for binary alphabet. The central problem Row Deletion(B) for
a fixed matrix B is defined as follows.

Input: A matrix A and a nonnegative integer k.
Question: Using at most k row deletions, can A be transformed into a
matrix A′ such that A′ does not induce B?

Herein, A′ induces B if there exists a B′ obtained from B through a finite series
of row and column swappings such that B′ can be obtained from A by row and

LCNS, Vol 2932, pp. 349–360, Springer 2004

column removal. The remaining rows and columns of A resulting in B′ are called
occurrence of B in A. A matrix A is B-free if B is not induced by A.

This work establishes strong links between Row Deletion(B) and the d-
Hitting Set problem for constant d, which is defined as follows.

Input: A collection C of subsets of size at most d of a finite set S and a
nonnegative integer k.
Question: Is there a subset S′ ⊆ S with |S′| ≤ k such that S′ contains
at least one element from each subset in C?

Already for d = 2, d-Hitting Set is NP-complete [2].
To express the closeness between variants of Row Deletion(B) and d-

Hitting Set for various d, we need the following strong notion of reducibil-
ity. Let (S, C, k) be an instance of d-Hitting Set. We say that there is a
parameter-preserving reduction from d-Hitting Set to Row Deletion(B) if
there is a polynomial time algorithm that transforms (S, C) into a matrix A and
(S, C, k) is a true-instance of d-Hitting Set iff (A, k) is a true-instance of Row
Deletion(B). The important observation here is that the “objective value pa-
rameter” k remains unchanged. This makes it possible to link approximation
and exact (fixed-parameter) algorithms for both problems.

Finally, for actually performing row deletions in the input matrix A of Row
Deletion(B), it is necessary to find the set of rows in A that induce B. A
straightforward algorithm yields the following.

Proposition 1 Given an n×m matrix A and a fixed r×s matrix B (where 1 ≤
r ≤ n and 1 ≤ s ≤ m), we can find all size-r sets of rows in A that induce B

in O(nr · m · s · r!) worst-case time. ⊓⊔

Observe that Proposition 1 gives a pure worst-case estimation not making
use, e.g., of the special structure of the respective B. In any case, however, for
constant values of r and s the running time is polynomial.

3 Computational Hardness

In this section, we explore the relative computational hardness of Row Dele-
tion(B) by studying its relationship to d-Hitting Set. We point out many
cases concerning the structure of B for which Row Deletion(B) is at least as
hard as d-Hitting Set for some d depending only on B.

Summary of results.
The key idea behind all reductions from d-Hitting Set to Row Deletion(B)
is to choose a symbol σ from the alphabet Σ and to decompose B—in a certain
manner—into four submatrices, one of them consisting only of σ’s and one of
them which does not contain σ. We can then use the latter submatrix to encode
a given d-Hitting Set instance into an instance of Row Deletion(B) (i.e., a
matrix A) and use σ as a “fill-in” symbol to prevent unwanted occurrences of B

in A.

LCNS, Vol 2932, pp. 349–360, Springer 2004

r

s

−→
σ

V W

U
. . .
. . .

...

s′ s′′

r′

r′′

B
permutation

σ ∈ Σ, V is σ-free

Bσ

V W

Uσ

“encoding part”

“non-encoding part”

Fig. 1. General scheme for the σ-decomposition of a matrix B over the alphabet σ.

We call this special decomposition of the forbidden submatrix B a σ-decom-
position, illustrated in Fig. 1 and formally defined as follows:

Definition 1. (σ-decomposition) Given an ℓ-ary r×s matrix B = (bij) over
the alphabet Σ. A permutation Bσ of B is called a σ-decomposition of B if there
exists a σ ∈ Σ and there exist r′, r′′, s′, s′′ with r′ + r′′ = r, s′ + s′′ = s such that
(1) r′ > 0 and s′ > 0,
(2) ∀ 1 ≤ i ≤ r′, 1 ≤ j ≤ s′ : bij 6= σ (call this upper left submatrix V) and
(3) ∀ r′ < i ≤ r, 1 ≤ j ≤ s′ : bij = σ.
The upper right r′× s′′ submatrix (bij)1≤i≤r′,s′<j≤s of Bσ is called W , the lower
right r′′ × s′′ submatrix (bij)r′<i≤r,s′<j≤s is referred to as U .

The left part (bij)1≤i≤r,1≤j≤s′ of Bσ (the one containing V) is called the
encoding part of Bσ. The right part (bij)1≤i≤r,s′<j≤s of Bσ (the one consisting
of W and U) is called the non-encoding part of Bσ.

For a given σ ∈ Σ, a corresponding σ-decomposition can be easily computed
in time linearly depending on the size of B (details omitted). In the following
hardness proofs, the height of V plays a crucial role.

Our main hardness results then are the following.

Theorem 1. Let B be a forbidden submatrix of size r × s with a σ-decomposi-
tion Bσ where the submatrix V (of height r′) of Bσ is not induced in the non-
encoding part of Bσ. Then there exists a parameter-preserving reduction from
r′-Hitting Set to Row Deletion(B). Hence, if r′ ≥ 2, Row Deletion(B)
is NP-complete.

Clearly, it is possible that V is induced in the non-encoding part of Bσ. In
particular, then each column vector of V is induced at least once in the non-
encoding part. If we can find one column vector of V which is induced at most
once in the non-encoding part, we again are able to achieve a hardness result for
Row Deletion(B):1

1 Observe that it is possible to construct a submatrix B which fulfills the prerequisites
of Theorem 1, but does not fulfill the prerequisites of Theorem 2, and vice versa.

LCNS, Vol 2932, pp. 349–360, Springer 2004

Theorem 2. If the r × s submatrix B has a σ-decomposition Bσ where the
submatrix V of height r′ has a column vector v that is induced at most once
in the non-encoding part of Bσ, then r′-Hitting Set is parameter-preserving
reducible to Row Deletion(B).

If the submatrix B does not fulfill any of the two prerequisites from Theo-
rems 1 or 2, we can determine two further subcases for which a hardness result
can be established:

Theorem 3. Let B be a forbidden r × s submatrix with a σ-decomposition Bσ

where all entries of U are equal to σ and V contains r′ rows. Then r′-Hitting
Set is parameter-preserving reducible to Row Deletion(B).

Theorem 4. Let B be a forbidden r × s submatrix with a σ-decomposition Bσ

where all entries of W are equal to σ and V contains r′ rows. Then r′-Hitting
Set is parameter-preserving reducible to Row Deletion(B).

For all other cases, i.e., if B does not fulfill any of the prerequisites from
Theorems 1–4, we are not aware of a general statement on the complexity of

Row Deletion(B). As an example of such a matrix consider B =
(

1 0 0
0 1 0
0 0 1

)

over

the alphabet Σ = {0, 1}.
It is also clear that Row Deletion(B) is not NP-hard for all B. For example,

Row Deletion(B) is solvable in polynomial time if B is a 1×1-matrix. Besides,
there are also non-trivial examples for which Row Deletion(B) is solvable in
polynomial time, as the matrix B = (1

0) over the alphabet Σ = {0, 1} shows:
Observe that a B-free matrix A has the property that all its columns consist
either solely of 1’s or solely of 0’s, i.e., all rows of A are identical. This implies
that the minimum number of rows that need to be deleted in order to make an
n × m matrix B-free is equal to n − x, where x denotes the size of the largest
set of identical rows in A, which can be determined efficiently.

Observe, however, that Row Deletion(B) for B = (1
1) over the alphabet

Σ = {0, 1} already is NP-complete by Theorem 1, since B trivially has a σ-
decomposition with σ = 0, V = B, and W = U = ∅.

Outline of hardness proofs.
As mentioned above, all hardness results are proven by encoding an instance
(S, C, k) of d-Hitting Set—where the value of d is determined by the forbid-
den submatrix B—as an instance (A, k) of Row Deletion(B). The key idea
concerning how to use a given σ-decomposition of B to encode a d-Hitting Set
instance is illustrated by the following proof of Theorem 3. Subsequently, we in-
dicate how this construction can be extended to prove, in ascending involvedness
of the construction, Theorem 4, Theorem 1, and Theorem 2. Note that due to
lack of space and for a better understandability of the key ideas involved, parts
of some proofs are only sketched; for their details, refer to [11].

Proof (Theorem 3). Given an instance (S, C, k) of r′-Hitting Set and a σ-
decomposition Bσ of the forbidden r × s submatrix B. Let S = {1, . . . , n} and

LCNS, Vol 2932, pp. 349–360, Springer 2004

V W

s′ s′′

3

of the forbidden

1
2
3

...

4
5
6

n

.

C = {{1, 3, 6}, . . . , {3, 5, n}, . . . , {1, 3, 5}}

A σ-decomposition

submatrix B

An instance of

3-Hitting Set

|S|

...
...

s

s

s s

s · |C|

The 3-Hitting Set instance encoded
into a Row Deletion(B) instance

C = {{1, 3, 6}, . . . , {3, 5, n}, . . . , {1, 3, 5}}

k

S = {1, . . . , n}

Fig. 2. An example reduction from 3-Hitting Set to Row Deletion(B) following
from the proof of Theorem 3 (illustrated for the case where r′ = r).

C = {C1, . . . , Cm}. For now, assume that r′ = r ⇒ r′′ = 0 (i.e., B consists only
of V and W). We generate a matrix A of size n× (s ·m). Each row of A corre-
sponds to an element in S. For each set C ∈ C, one occurrence of B is encoded
into s consecutive columns of A, using the rows that correspond to the elements
in C. For example, consider Ch ∈ C, 1 ≤ h ≤ m, with Ch = {z1, . . . , zr} and
z1, . . . , zr ∈ {1, . . . , n}. Then, we generate the submatrix (aij)1≤i≤n,(h−1)·s<j≤h·s

of A such that the zith row of this submatrix equals the ith row of B, for all
i = 1, . . . , r, and all other rows of this submatrix are set equal to σ (an illustration
for this is provided in Fig. 2). In this way, A contains m blocks of s consecutive
columns where each block induces B exactly once. These are the only occur-
rences of B, since two columns from two different blocks cannot have r rows
containing no σ. Observe how the property of A that B is only induced within
each block and, furthermore, exactly once in each block, is due to using σ as
a “fill-in” symbol: Since σ is not contained in V , we ensure that, by using σ

as the “default-entry” for A, no additional occurrences of V (and therefore B)
are induced in the rows of a block other than the ones intended. The outlined
reduction can be performed in O(n · m · s) time.

The construction is easily generalized for the case where r′ < r, i.e., r′′ > 0,
by adding r′′ + k rows containing only σ at the bottom of A. Note that by this
construction, although B is induced multiple times in each block, V is induced
only once in each block.

It can easily be shown that solutions to the original instance of r′-Hitting
Set have a “1:1-correspondence” with solutions to Row Deletion(B) on A:

“⇒” Assume that we have a solution S ′ to the original instance of r′-Hitting
Set with |S′| = k. Then, delete those rows in A that correspond to the elements

LCNS, Vol 2932, pp. 349–360, Springer 2004

in S ′, thus obtaining A′. Note that then, from the submatrix V of each B that
was encoded into A, at least one row has been deleted. Every column in A′

contains less than r′ symbols different from σ. This directly implies that V does
not occur in A′, and therefore A′ is B-free. We have a solution for the Row
Deletion(B) instance with k row deletions.

“⇐” Assume that by deleting at most k rows in A we can make A B-free.
Note that we cannot destroy any of the induced B in A by deleting at most k of
the bottom r′′ + k rows of A. Therefore, it must be possible to delete at most k

of the top n rows of A to make A B-free. Furthermore, from each induced B

in A, at least one row must have been deleted. Thus, choosing the elements in S
that correspond to the deleted rows into a set S ′ yields a solution of size k to
the original r′-Hitting Set problem. ⊓⊔

The idea of the above proof—using the submatrix V of Bσ to encode an
instance of d-Hitting Set—is employed in all of the following proofs. In order
to show the “1:1-correspondence” of the original d-Hitting Set problem and
the generated Row Deletion(B) instance, mainly two conditions need to be
fulfilled:

Condition (1): If the optimal solution to the d-Hitting Set instance has
size k, there are no “cheaper” solutions for the generated Row Deletion(B)
instance.
Condition (2): If there is a solution of size k to the original d-Hitting
Set instance, deleting the corresponding rows in A destroys all occurrences
of B in A.

Whilst Condition (1) is rather straightforward to meet by extending the idea of
the above proof, Condition (2) is quite intricate to fulfill in general, because it
must be ensured that parts of Bs encoded into A due to different sets in C do
not induce additional occurrences of B.

Proof (Theorem 4). Given an instance of r-Hitting Set and a σ-decomposition
for the forbidden submatrix B, the resulting matrix A of this proof’s reduction
is composed of four submatrices: The upper left submatrix is generated by the
encoding scheme presented in the proof of Theorem 3 using V as the forbidden
submatrix, the upper right and lower left submatrices are filled with σ’s. Two
cases are distinguished for writing U into the lower right submatrix of A: If U

does not induce V (Case I), the lower right submatrix has size (k+1)r′′×(k+1)s′′

and contains k + 1 times the matrix U in a diagonal scheme. If U induces V

(Case II), the lower right submatrix has size (k + 1)r′′ × s′′ and contains k + 1
copies of U—the two cases are illustrated by Fig. 3.

Observe that the reduction for Case I keeps the right part of A V -free. Re-
call that a single U by itself cannot induce V according to the prerequisite of
Case I. However, if we would encode occurrences of U one upon the other as
for Case II, on the one hand, V could be induced by rows from different encod-
ings of U in the lower right part of A. On the other hand, U could be induced
by several encodings of V in the upper left part of A. Consequently, we would

LCNS, Vol 2932, pp. 349–360, Springer 2004

V

s′ s′′

r′

of the forbidden

. . .

A σ-decomposition

submatrix B

(C,S,k)

An instance of

r′-Hitting Set |S|
...

s

s′ · |C|

Encoding of the r′-Hitting Set instance
into a Row Deletion(B) problem

s′

σ(k + 1)r′′

Encoding of the r′-Hitting Set instance using the reduction scheme

from Theorem 3 and V as the forbidden submatrix

σ

r′′

r

. . .

σ U s′ s′

(k + 1)s′′

σ

Case I: U is V -free

Case II: U induces V

U

U

Uσ

σ

s′′

U

U

U

Fig. 3. Illustration of the reduction in the proof of Theorem 4.

have unwanted occurrences of B. The diagonal scheme avoids these unwanted
occurrences of V and keeps in particular the right part of A B-free. In Case II,
the reduction cannot keep the right part of A V -free because already a single
occurrence of U induces V . However, B cannot be induced there because the
reduction does not provide enough columns for an occurrence of B. Therefore, if
we destroy all induced V s in the upper left part of A , then U cannot be induced
in the left part of A due to the prerequisite of Case II. Then, the matrix A can
be made B-free, even if there are some occurrences of V in the right part of A.

Now, we show the “1:1-correspondence” of the solutions:

“⇒” Assume that we have a solution S ′ to the encoded r′-Hitting Set
instance. Then, delete those of the n topmost rows in A that correspond to the
elements in S ′, obtaining A′. Note that this destroys all occurrences of V in the
left part of A (ensuring Condition (2)). For Case I, this directly implies that A′

is V -free and therefore B-free. For Case II, recall that B is not induced in the
right part of A since we can find no sufficiently large set of columns such that
both U and V are induced there. But recall that since V is not induced in the
left part of A′, this also means that U is not induced there. Hence, A′ is B-free.

“⇐” Assume that by deleting k rows, we can make A B-free. Note that by
deleting one of the (k +1)r′′ bottommost rows in A, we can destroy at most one
induced B in A. Therefore, there is an optimal solution to Row Deletion(B)
that involves only the deletion of k of the n topmost rows of A. The rest of
the argument follows from the proof of Theorem 3: If, by deleting k of the n

topmost rows of A, we can make A B-free, then from each V encoded into the

LCNS, Vol 2932, pp. 349–360, Springer 2004

V

s′ s′′

r′

of the forbidden

. . .

A σ-decomposition

submatrix B

(C,S,k)

An instance of

r′-Hitting Set
|S|

...
s

s′ · |C|

Encoding of the r′-Hitting Set instance
into a Row Deletion(B) problem

s′

σr′′ · |C|

r′′

r

. . .

σ U
s′ s′

σ

σ

. . .
... . . .

W

s′′ s′′ s′′

s′′ · |C|

Encoding of the r′-Hitting Set instance
using the scheme from Theorem 3

and W as the forbidden submatrix

and V as the forbidden submatrix

using the scheme from Theorem 3
Encoding of the r′-Hitting Set instance

Fig. 4. Reduction from r′-Hitting Set to Row Deletion(B) used in the proof of
Theorem 1.

left part of A, at least one row must have been deleted (ensuring Condition (1)).
Since each encoded V corresponds directly to a set in C, choosing the elements
in S that correspond to the deleted rows in A yields a solution to the original
r′-Hitting Set instance. ⊓⊔

Proof (Theorem 1). [Sketch] As illustrated in Fig. 4, this reduction is similar to
the one used in the proof for Case I of Theorem 4. The resulting matrix A is
again composed of four submatrices, the reduction only differs in the construc-
tion of the upper right submatrix of A. In the upper right submatrix of A, the
given r′-Hitting Set instance is encoded using the scheme from the proof of
Theorem 3 and W as the forbidden submatrix. As in the previous two proofs,
the parameter k is preserved and the encoding can be carried out in polynomial
time with respect to the input size.

As in the proof of Theorem 4, the encoding process ensures that B is not
induced in the right part of A. This is due to the following observation: Assume
that B is induced in the right part of A. Then, V is induced there as well. By
the prerequisites of the theorem, the non-encoding part of B does not induce V .
Therefore, an occurrence of V involves columns from at least two different en-
codings of U . However, note that any two such columns of A can—due to the
encoding scheme—only have less than r′ rows that do not contain a σ. But V

has r′ rows with no symbol equal to σ, a contradiction.

LCNS, Vol 2932, pp. 349–360, Springer 2004

Now note that by deleting one of the r′′ · |C| bottom rows in A, we can
destroy at most one induced submatrix B in A—this could always be achieved
by deleting one of the |S| topmost rows of A. Therefore, every solution of the
produced Row Deletion(B) instance can be translated to one deleting only
rows from the topmost |S| rows.

From the second observation it is clear that an optimal solution of Row
Deletion(B) can only consist of the n topmost rows of A. The elements of S
that correspond to the deleted rows form a solution for the original r′-Hitting
Set instance, using the same argument as in the previous proofs. Conversely, if
we have a solution of size at most k to the original r′-Hitting Set instance,
deleting the corresponding rows in A destroys all occurrences of V in A due
to the first observation and makes A B-free. Hence, every solution to the r′-
Hitting Set instance (S, C, k) implies a solution to the Row Deletion(B)
instance (A, k) and vice versa. ⊓⊔

The scheme and ideas of the above proof are also used in proving Theorem 2.
The details of the proof are rather involved, firstly establishing the result for
r×2 matrices and then extending this result to obtain Theorem 2. We shall only
present the main idea for the reduction involved, referring to [11] for details.

Proof (Theorem 2). [Reduction scheme for r × 2 matrices, key ideas] For r × 2
matrices that fulfill the prerequisites of the theorem, the reduction is performed
as follows: Given an instance of r′-Hitting Set, the matrix A is constructed
just as in the proof of Theorem 1. Then, the following algorithm is performed:
As long as there are two columns in the right part of A whose upper n entries
are identical to each other, remove one of the two columns from A. It is possible
to show that after this “merging” of columns in A, the right part of A is B-free.

An extension of this scheme from r × 2 matrices to all matrices that fulfill
the prerequisites of this theorem is performed by arguing that by being able to
avoid the occurrence of an r × 2 submatrix of B in the right part of A, we are
also able to avoid the occurrence of B there altogether. ⊓⊔

4 Algorithmic Tractability

This section points out an algorithmic approach to solve Row Deletion(B).
To this end, we give a parameterized reduction to r-Hitting Set where r is the
number of rows in B.

Theorem 5. Given a fixed r×s submatrix B, Row Deletion(B) is parameter-
preserving reducible to r-Hitting Set in O(nr · m · s · r!) time.

Proof. Given an instance (A, k) of Row Deletion(B) (where A is an n × m

matrix), we construct an instance (S, C, k) of r-Hitting Set as follows: (1) We
construct a set S = {r0, . . . , rn−1} containing one element for every row in A.
(2) We compute a set C of subsets of S: For every set R ⊆ {r0, . . . , rn−1} with
|R| = r corresponding to r rows in A that induce B, we add R to C. (3) The

LCNS, Vol 2932, pp. 349–360, Springer 2004

r0

r1

r2

r3

r4

r5

0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 1 1 10 0 0 0

1 1110 0 0 0 0 0

0 0 0 0 0 0 11 0 0

0 1 0 0 11 0 0 0 0

c1 c2 c3 c4 c5 c6 c7c0 c8 c9

C = {{r0, r1, r3}, {r0, r2, r3},

{r0, r3, r5}, {r0, r4, r5},

{r1, r3, r4}, {r2, r3, r4}}

Fig. 5. Illustrating the reduction from Row Deletion(B) to r-Hitting Set. Let B

be the matrix consisting of rows (1, 1), (0, 1), and (1, 0). Given an input matrix A as
shown, we generate an r-Hitting Set instance consisting of a set S = {r0, r1, . . . , r5}
and the set C as shown. The gray underlay shows, as an example, how B is induced
by rows r0, r3, and r5 in columns c1 and c6 of A, leading to the the subset {r0, r3, r5}
in C.

parameter k is directly preserved. Then, (S, C, k) is the resulting r-Hitting Set
instance. An example for the reduction is illustrated in Fig. 5.

The direct “1:1-correspondence” between the solutions of the r-Hitting Set
instance and the Row Deletion(B) instance can be shown as follows: Let S ′ ⊆
S be a solution of size k to the r-Hitting Set instance (S, C, k). We delete the
rows in A that correspond to the elements in S ′, yielding A′. Assume that B

were still induced in A′ by a set I of rows. Then, the rows in I did induce B

in A, meaning a set containing the elements corresponding to these rows was put
into C. But one row of I must then have been deleted since S ′ is a valid solution
to (S, C, k), a contradiction. Therefore, B cannot be induced by A′ anymore.

If, on the other hand, A can be made B-free by deleting k rows, then for
each occurrence of B in A by some rows, at least one of these rows must have
been deleted. By choosing the elements corresponding to the deleted rows as a
solution S ′ ⊆ S to the generated r-Hitting Set instance, we have chosen at
least one element from every set in C, making S ′ a valid solution of size k.

The running time follows with Proposition 1. ⊓⊔

Theorem 5 directly implies the following two positive results:

– The best known polynomial-time approximation algorithm for r-Hitting
Set, which currently has approximation factor r, can be used to obtain a
factor-r approximation for the corresponding Row Deletion(B).

– r-Hitting Set can be trivially solved in O(rk · nr) time, where k denotes
the size of the solution. This means that for constant r Row Deletion(B)
is fixed-parameter tractable with respect to parameter k. See [7] for the
currently best fixed-parameter algorithms for r-Hitting Set—for instance,
the best exponential term for 3-Hitting Set is known to be 2.27k instead
of only 3k.

LCNS, Vol 2932, pp. 349–360, Springer 2004

5 Conclusion

In this work, we have started a systematic study on complexity of and algorithms
for Row Deletion(B). Among others, we were able to show NP-completeness
for a number of natural cases of forbidden submatrices B. It remains open to
generalize all special cases treated in this work, e.g., by proving or disproving
the following conjecture: For every forbidden submatrix B with at least three
rows, Row Deletion(B) is NP-complete.

Our work was partially motivated by constructing perfect phylogenies from
binary matrices [8, 10]. For this special case, where we have to consider a for-
bidden submatrix B consisting of the rows (1, 1), (1, 0), and (0, 1), our results
yield that Row Deletion(B) is at least as hard as 2-Hitting Set (which is
the same as the well-known Vertex Cover problem) and that it always can
be solved by transforming it into an instance of 3-Hitting Set.

Note that there remains a “gap” between the results of this work: Let an
r×s forbidden submatrix B have a σ-decomposition with height-r′ submatrix V .
Then, if r > r′, we showed, on the one hand, that in certain cases Row Dele-
tion(B) is at least as hard to solve as r′-Hitting Set and, on the other hand,
that it is not harder to solve than r-Hitting Set.

References

1. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. SIAM
Monographs on Discrete Mathematics and Applications, 1999.

2. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

3. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering:
fixed-parameter algorithms for clique generation. In Proc. of 5th CIAC, volume
2653 of LNCS, pages 108–119, Springer, 2003.

4. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation of
search tree algorithms for graph modification problems. In Proc. of 11th ESA,
volume 2832 of LNCS, pages 642–653, Springer, 2003.

5. B. Klinz, R. Rudolf, and G. J. Woeginger. Permuting matrices to avoid forbidden
submatrices. Discrete Applied Mathematics, 60:223–248, 1995.

6. A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge
modification problems. Discrete Applied Mathematics, 113:109–128, 2001.

7. R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for 3-
Hitting Set. Journal of Discrete Algorithms, 1:89–102, 2003.

8. I. Pe’er, R. Shamir, and R. Sharan. On the generality of phylogenies from incom-
plete directed characters. In Proc. of 8th SWAT, volume 2368 of LNCS, pages
358–367, Springer, 2002.

9. R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In Proc.
of 28th WG, volume 2573 of LNCS, pages 379–390, Springer, 2002.

10. R. Sharan. Graph Modification Problems and their Applications to Genomic Re-
search. Ph.D. Thesis, School of Computer Science, Tel-Aviv University, 2002.

11. S. Wernicke. On the Algorithmic Tractability of Single Nucleotide Polymorphism
(SNP) Analysis and Related Problems. Diploma Thesis, WSI für Informatik, Uni-
versität Tübingen, September 2003.

