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Abstract. Recent technologies for typing single nucleotide polymor-
phisms (SNPs) across a population are producing genome-wide genotype
data for tens of thousands of SNP sites. The emergence of such large data
sets underscores the importance of algorithms for large-scale haplotyp-
ing. Common haplotyping approaches first partition the SNPs into blocks
of high linkage-disequilibrium, and then infer haplotypes for each block
separately. We investigate an integrated haplotyping approach where a
partition of the SNPs into a minimum number of non-contiguous subsets
is sought, such that each subset can be haplotyped under the perfect phy-
logeny model. We show that finding an optimum partition is NP-hard
even if we are guaranteed that two subsets suffice. On the positive side,
we show that a variant of the problem, in which each subset is required
to admit a perfect path phylogeny haplotyping, is solvable in polynomial
time.

1 Introduction

Single nucleotide polymorphisms (SNPs) are differences in a single base, across
the population, within an otherwise conserved genomic sequence [21]. SNPs ac-
count for the majority of the variation between DNA sequences of different
individuals [19]. Especially when occurring in coding or otherwise functional re-
gions, variations in the allelic content of SNPs are linked to medical condition
or may affect drug response.

The sequence of alleles in contiguous SNP positions along a chromosomal
region is called a haplotype. A SNP commonly has two variants, or alleles, in the
population, corresponding to two of the four genomic letters A, C, G, and T. For
diploid organisms, the genotype specifies for every SNP position the particular
alleles that are present at this site in the two chromosomes. Genotype data
contains information only on the combination of alleles at a given site; it does not
reveal the association of each allele with one of the two chromosomes. Current
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technology, suitable for large-scale polymorphism screening, obtains only the
genotype information at each SNP site. The actual haplotypes in the typed
region can be obtained at a considerably higher cost [19]. Due to the importance
of haplotype information in association studies, it is desirable to develop efficient
methods for inferring haplotypes from genotype information.

Extant approaches for inferring haplotypes from genotype data include parsi-
mony approaches [3, 12], maximum likelihood methods [7], and statistical meth-
ods [18, 20]. Here we consider a perfect-phylogeny-based technique for haplotype
inference, first introduced in a seminal paper by Gusfield [13]. This approach
assumes that the underlying haplotypes can be arranged in a phylogenetic tree,
so that for each SNP site the set of haplotypes with the same state at this site
forms a connected subtree. The theoretical elegance of the perfect phylogeny
approach to haplotyping as well as its efficiency and good performance in prac-
tice [2, 5] have spawned several studies of the problem and its variants [1, 5, 15].
For more background on perfect phylogeny haplotyping see [14].

A more restricted model is the perfect path phylogeny model [9, 10], in which
the phylogenetic tree is a single long path. The motivation for considering path
phylogenies is the discovery that yin-yang (complementary) haplotypes, which
imply that in the prefect phylogeny model any phylogeny has to take the form of
a path, are very common in human populations [22]. We previously found that
over 70% of publicly available human genotype matrices that admit a perfect
phylogeny also admit a perfect path phylogeny [9, 10]. In the presence of missing
data, finding perfect path phylogenies appears to be easier since this problem
is fixed-parameter tractable [10], which is not known to be the case for perfect
(branching) phylogenies.

The perfect phylogeny assumption is particularly appropriate for short ge-
nomic regions that have not undergone recombination events. For longer regions,
it is common practice to sidestep the recombination problem by inferring haplo-
types only for small blocks of data and then assembling these blocks to obtain the
complete haplotypes [6]. Thus, the common approach to large-scale haplotyping
consists of two phases: First, partition the data into blocks of SNPs. Then, infer
the haplotypes for each block separately using an algorithm based on the perfect
phylogeny model. Most existing block-partitioning methods partition the data
into contiguous blocks, whereas in real biological data the blocks need not be
contiguous [17].

In this paper we study the computational complexity of a combined approach
that aims at finding a partition of an input set of SNPs into a minimum number
of subsets (not necessarily contiguous), such that the genotype data induced on
each subset is amenable to haplotyping under a perfect phylogeny model. We
consider several variants of this problem. First, we show that for haplotype data
it is possible to check in polynomial time whether there is a perfect phylogeny
partition of size at most two (Section 4). However, for size three and more
the problem becomes NP-hard. The situation for genotype data is even worse:
Coming up with a partition into a constant number of subsets is NP-hard even
if we are guaranteed that two sets suffice (Section 5). On the positive side, we
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show that the partitioning problem under the perfect path phylogeny model can
be solved efficiently even for genotype matrices (Section 6). This result implies a
novel haplotyping method that integrates the block partitioning phase and the
haplotyping phase under this model. Moreover, unlike most block-partitioning
techniques, our algorithm does not assume that the blocks are contiguous.

2 Preliminaries and Problem Statement

In this section we provide background on haplotyping via perfect phylogeny and
formulate the partitioning problems that are at the focus of this paper.

2.1 Haplotypes, Genotypes, and Perfect Phylogenies

A haplotype is a row vector with binary entries. Each position of the vector
corresponds to a SNP site, and specifies which of the two possible alleles are
present at that position (we consider only bi-allelic SNPs since sites with more
alleles are rare). For a haplotype h, let h[i] denote the ith position of h. A
haplotype matrix is a binary matrix whose rows are haplotypes. A haplotype
matrix B admits a perfect phylogeny or just is pp if there exists a rooted tree TB

such that:

1. Every row of B labels exactly one node of TB .
2. Each column of B labels exactly one edge of TB .
3. Every edge of TB is labeled by at least one column of B.
4. For every two rows h1 and h2 of B and every column i, we have h1[i] 6= h2[i]

iff i lies on the path from h1 to h2 in TB .

A genotype is a row vector with entries in {0, 1, 2}, each corresponding to
an SNP site. A 0- or 1-entry in a genotype implies that the two underlying
haplotypes have the same entry in this position. A 2-entry in a genotype implies
that the two underlying haplotypes differ at that position. A genotype matrix
is a matrix whose rows are genotypes. Two haplotypes h1 and h2 explain (or
resolve) a genotype g if for each position i the following holds: g[i] ∈ {0, 1}
implies h1[i] = h2[i] = g[i]; and g[i] = 2 implies h1[i] 6= h2[i]. Given an n × m
genotype matrix A and a 2n ×m haplotype matrix B, we say that B explains
A if for every i ∈ {1, . . . , n} the haplotypes in rows 2i − 1 and 2i of B explain
the genotype in row i of A. For a genotype g and a value v ∈ {0, 1, 2}, the set
of columns with value v in g is called the v-set of g. Given an n ×m genotype
matrix A, we say that it admits a perfect phylogeny or just is pp if there is a
2n × m haplotype matrix B that explains A and admits a perfect phylogeny.
The problem of determining whether a given genotype matrix admits a perfect
phylogeny, and if it does, finding the explaining haplotypes, is called perfect
phylogeny haplotyping.

In general, the haplotype labeling the root of a perfect phylogeny tree can
have arbitrary ancestral states (0 or 1) at each site. In the directed version of
perfect phylogeny haplotyping the ancestral state of every SNP site is assumed
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to be 0 or, equivalently, the root of the tree corresponds to the all-0 haplotype.
As shown in [5], one can reduce the general (undirected) problem to the directed
case using a simple transformation of the input matrix: In each column of the
genotype matrix search for the first non-2-entry from above; and if this entry is
a 1-entry, exchange the roles of 0-entries and 1-entries in this column.

2.2 Perfect Path Phylogenies

A perfect path phylogeny is a perfect phylogeny in the form of a path, which
means that the perfect phylogeny may have at most two leaves and branching
occurs only at the root. If a haplotype/genotype matrix admits a perfect path
phylogeny, we say that it is ppp.

The motivation for considering path phylogenies in the context of haplotyp-
ing is the discovery that yin-yang (complementary) haplotypes are very common
in human populations [22]. We previously found, see [10, 9], that over 70% of
publicly available human genotype matrices that admit a perfect phylogeny also
admit a perfect path phylogeny. In the presence of missing data, finding per-
fect path phylogenies appears to be easier since this problem is fixed-parameter
tractable, which is not known to be the case for perfect (branching) phylogenies.

2.3 Partitioning Problems

Given a set C of columns of a haplotype or genotype matrix, define the following
functions: χpp(C) = min{k | ∃C1, . . . , Ck : C = C1 ∪ · · · ∪Ck, each Ci is pp} and
χppp(C) = min{k | ∃C1, . . . , Ck : C = C1 ∪ · · · ∪ Ck, each Ci is ppp}. By “Ci is
pp” we mean that the matrix formed by the columns in Ci is pp (the pp-property
does not depend on the order of the columns). We call a partition (C1, . . . , Ck)
of C in which each Ci is pp a pp-partition. In a slight abuse of notation we write
χpp(A) for χpp(C), when C is the set of columns in the matrix A. The notation
for ppp is analogously defined.

Our objective in the present paper is to determine the computational com-
plexity of the functions χpp and χppp, both for haplotype matrices and, more
generally, for genotype matrices. The pp-partition problem is to compute χpp

and a partition realizing the optimum value, and the ppp-partition problem is to
compute χppp and a corresponding partition.

Similarly to perfect phylogeny haplotyping, there are directed and undirected
versions of the pp- and ppp-partition problems, but the above-mentioned trans-
formation of Eskin et al. [5] can again be used to reduce the more general undi-
rected case to the directed case. This shows the both versions are equivalent,
allowing us to restrict attention to the directed version in the following.

3 Review of Related Results

In this section we review results from the literature that we use in the sequel.
This includes both results on haplotyping as well as results from order theory.



Proc. 6th WABI-06, Vol. 4175 in LNCS, pp. 92-102, Springer, 2006

3.1 The Complexity of Perfect Phylogeny Haplotyping

A polynomial-time algorithm for perfect phylogeny haplotyping was first given
by Gusfield [13]. A central tool in Gusfield’s algorithm and those that followed
it, is the concept of induce: The induce of a genotype matrix A is the set of rows
that is common to all haplotype matrices B that explain A. For example, the
induce of the genotype matrix ( 2 2 1

1 0 0 ) is just {100}, but the induce of ( 0 2
1 0 ) is

{00, 01, 10}. A key theorem on perfect phylogenies is the following (cf. [11]):

Theorem 3.1. (Four-Gamete Test) A haplotype matrix B is pp iff the induce
of any pair of its columns has size at most 3.

For genotype matrices, an induce of size 4 for two columns also means that the
matrix admits no perfect phylogeny, but the converse is no longer true and a
more elaborate algorithm is needed to check whether a genotype matrix is pp.

3.2 A Partial-Order Perspective on Haplotyping

We now review results from [9] that relate haplotyping to order theory. As shown
in [9], though the result is also implicit in [13], one can characterize the genotype
matrices that admit a directed perfect phylogeny as follows:

Theorem 3.2. A genotype matrix A admits a directed perfect phylogeny iff there
exists a rooted tree TA such that:

1. Each column of A labels exactly one edge of TA.
2. Every edge of TA is labeled by at least one column of A.
3. For every row r of A: (a) the columns in its 1-set label a path from the root

to some node u; and (b) the columns in the 2-set of row r label a path that
visits u and is contained in the subtree rooted at u.

We consider the following partial order � (introduced by Eskin et al. [5]) on
the columns of A: Let 1 � 2 � 0 and extend this order to {0, 1, 2}-columns by
setting c � c′ if c[i] � c′[i] holds for all rows i. The following theorem shows
that the existence of a perfect path phylogeny for a matrix A with column set
C can be decided based on the properties of (C,�) alone, but we first need a
definition.

Definition 3.3. Two columns are separable if each has a 0-entry in the rows
where the other has a 1-entry. We say that a set C of {0, 1, 2}-columns has
the ppp-property if it can be covered by two (possibly empty) chains (C1,�)
and (C2,�), so that their maximal elements are separable, if both are non-empty.
The pair (C1, C2) is called a ppp-cover of C.

Theorem 3.4 ([9]). A genotype matrix A admits a directed perfect path phy-
logeny iff its column set has the ppp-property.
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3.3 Colorings of Hypergraphs

A hypergraph H = (V,E) consists of a vertex set V and a set E of hyperedges,
which are subsets of V . A hypergraph is k-uniform if each edge has exactly
k elements. A legal χ-coloring of a hypergraph H is a function f : V → {1, . . . , χ}
such that no edge in E is monochromatic. The chromatic number of H is the
minimum χ for which there exists a legal χ-coloring of H.

It has been known for a long time that one can check in polynomial time
whether a graph (a 2-uniform hypergraph) can be 2-colored and that checking
whether it can be χ-colored is NP-hard for every χ ≥ 3. This implies that, for
every k ≥ 2 and every χ ≥ 3, checking whether a k-uniform hypergraph is χ-
colorable is NP-hard. It is even NP-hard to approximate the chromatic number
within a factor of nε, see [16].

4 PP-Partitioning Problems for Haplotype Matrices

In this section we study the complexity of χpp(B) for haplotype matrices B. It
turns out we can decide in polynomial time whether χpp(B) is 1 or 2, but it
is NP-hard to decide whether it is 3 or more. The proofs of these results rely
on easy reductions from χpp, restricted to haplotype matrices, to the chromatic
functions for graphs and back.

Theorem 4.1. There is a polynomial-time algorithm that checks, on input of a
haplotype matrix B, whether χpp(B) ≤ 2.

Proof. By Theorem 3.1 we can check in polynomial time whether χpp(B) =
1 holds. To check whether χpp(B) ≤ 2, we construct the following graph on
the columns of the matrix B: We put an (undirected) edge between every two
columns whose induce has size 4. We claim that χpp(B) ≤ 2 iff the resulting
graph can be colored with two colors. To see this, note that if the chromatic
number of the graph is larger than 2, then any subset of the columns of B will
contain two columns having an induce of size 4. On the other hand, if the graph
is 2-colorable, then the two color classes constitute a covering of the matrix B
in which no color class contains two columns having an induce of size 4. Hence,
by Theorem 3.1, each color class is pp. ut

Theorem 4.2. For every k ≥ 3, it is NP-hard to pp-partition a haplotype ma-
trix B into k perfect phylogenies.

Proof. We prove the claim by presenting a reduction of the NP-hard problem
k-coloring to pp-partitioning a haplotype matrix into k perfect phylogenies.

Reduction. Let a simple undirected graph G = (V,E) be given as input. We
map it to the following haplotype matrix B: There is a column for each vertex
v ∈ V . The first row in B is an all-0 row. For each vertex v there is one row
having a 1 in column v and having 0’s in all other column. Finally, for each edge
{u, v} ∈ E there a row in B having 1-entries in columns u and v and having
0-entries in all other columns.
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Correctness. Consider a coloring of the graph G. This coloring induces a
partition of the columns of the matrix B. For any two column of the same class
of the partition, the induce will not contain the bit string 11 and, thus, this
class is a perfect phylogeny by Theorem 3.1. For the other direction, consider a
partition of B into perfect phylogenies. Inside each class the induce of any two
different columns must have size at most 3. Since the induce of any two different
columns always contains 00, 01, and 10, the induce must be missing 11. Hence,
for any two columns in the same class there cannot be an edge in G. Thus, the
partition induces a coloring of the graph G. ut

Theorem 4.3. Unless P = NP, the function χpp cannot be approximated within
a factor of nε for any ε > 0.

Proof. In the reduction given in the proof of Theorem 4.2 the number of per-
fect phylogenies directly corresponds to the number of colors in a coloring. The
coloring problem for graphs is NP-hard to approximate within a factor of nε,
see [16]. ut

5 PP-Partitioning Problems for Genotype Matrices

By the results of the previous section there is little hope of finding (or just com-
ing close to) the minimum number of perfect phylogenies that cover a haplotype
matrix. Since haplotype matrices are just restricted genotype matrices (namely,
genotype matrices in which no 2-entries occur), the situation for genotype ma-
trices can even be worse. The only hope left is that we might be able to find
a partition of the columns of a genotype matrix into exactly two perfect phy-
logenies whenever this is possible in principle. As we saw before, for haplotype
matrices we can find the desired partition in polynomial time.

In the present section we show that for genotype matrices the situation is
much worse: even if we know that two perfect phylogenies suffice, coming up with
a partition into any constant number χ of perfect phylogenies is still “NP-hard.”
By this we mean that every problem in NP can be reduced to the pp-partitioning
problem in such a way that for all genotype matrices A output by the reduction
either χpp(A) ≤ 2 or χpp(A) > χ.

Theorem 5.1. For every χ ≥ 2, it is NP-hard to come up with a pp-partition
of a genotype matrix A into χ classes, even if we know that χpp(A) ≤ 2 holds.

Proof. We reduce from the problem of coloring a 3-uniform, 2-colorable hyper-
graph with a constant number of colors, which is known to be “NP-hard” in the
sense sketched above: In [4] it is shown that every problem in NP can be reduced
to this problem in such a way that the hypergraphs output by the reduction are
3-uniform and either 2-colorable or not χ-colorable.

Reduction. Given a 3-uniform hypergraph H, construct A as follows: A
has four rows per hyperedge and one column per vertex. For each hyperedge
h = {u, v, w}, the submatrix of A corresponding to the rows for h and to the
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columns for u, v, and w is the matrix S :=
(

2 2 2
1 0 0
0 1 0
0 0 1

)
. Every entry of A not

contained in such a submatrix is 0.
Correctness. We show how to construct a pp-partition of the columns of A

into k sets given a k-coloring of H, and how to construct a k-coloring of H given
a pp-partition into k sets.

Given a k-coloring of H with color classes V1, . . . , Vk, let Ci be the columns
corresponding to the vertices of Vi. We claim that each Ci is pp. To this end, let
Ai denote the submatrix of A that consists of the columns Ci. Each row contains
either one 1-entry or up to two 2-entries and otherwise the rows contain only
0-entries: No row can contain three or more 2-entries, because the maximum
number of 2-entries per row of A is three and the columns of these entries cannot
all be contained in Ci, since Vi does not contain whole hyperedges.

Those rows that do not contain any 2-entries are resolved trivially by having
two copies of these rows in the haplotype matrix. Those containing 2-entries are
replaced by two haplotype rows as follows: If they contain at most one 2-entry,
they are replaced by two copies in which the 2-entry is substituted by a 0- and a
1-entry. If they contain two 2-entries, in the first copy the 2-entries are replaced
by a 0- and a 1-entry (in this order), in the second copy they are replaced by
1- and 0-entry (in this order). Other than 2-entries, these rows only contain
0-entries; so the haplotypes they are replaced by have only one 1-entry.

This way of resolving the genotypes in Ai into haplotypes leaves at most
one 1-entry per row, which implies that the haplotype matrices are pp by the
four-gamete test (Theorem 3.1).

Given a pp-partition (C1, . . . , Ck) of the columns of A, let Vi contain the
vertices corresponding to the set Ci. We claim that no Vi contains a complete
hyperedge in H. Assume for a contradiction that u, v, w ∈ Ci for some i and
that h = {u, v, w} is an edge in H. Then, by the reduction, the submatrix Ai,
consisting of the columns Ci, contains the submatrix S. Consider a replacement
of the first row with a consistent haplotype pair. One of the haplotypes has to
contain two 1-entries and, consequently, there is a pair of columns that induces
all four gametes, a contradiction. ut

6 A Polynomial-Time Algorithm for PPP-Partitioning
Genotype Matrices

Our result on the positive side, which we prove in this section, is a polynomial-
time algorithm for ppp-partitioning genotype matrices. The algorithm is based
on reducing the problem to bipartite matching, which can be solved in polyno-
mial time.

Let A be a genotype matrix and let C be the set of columns of A. Let
C ′ := {c′ | c ∈ C} and C ′′ := {c′′ | c ∈ C}. Let E1 := {{c′, d′′} | c � d} and
let E2 := {{c′, d′} | c and d are separable}. Fulkerson’s reduction of Dilworth’s
Theorem to the König–Egerváry Theorem consists mainly of the observation
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algorithm ppp-partitioning
let G← (C′ ∪ C′′, E1 ∪ E2)
let M ← maximal matching(G).
let G← (C′ ∪ C′′, M)
foreach c ∈ C do

let G← G with the pair {c′, c′′} contracted to a single vertex
foreach connected component X of G do

output the perfect path phylogeny corresponding to X

Fig. 1. A polynomial-time algorithm for finding a ppp-partition.

that the matchings M in the bipartite graph (C ′, C ′′, E1) correspond one-to-
one to the partitions of (C,�) into |C| − |M | chains (see [8] for more details).
Our method for computing χppp(A) relies on the following modification of that
observation:

Theorem 6.1. The matchings M of the graph G = (C ′∪C ′′, E1∪E2) correspond
one-to-one to the partitions of the set of columns C into k = |C| − |M | subsets
that admit a directed perfect path phylogeny.

Proof. Let M be a matching of G. Contract all pairs of vertices {c′, c′′} to a
single vertex c. The resulting graph (C,M) has maximum degree 2 and contains
no cycles. We claim that each vertex set of a component of (C,M) has the
ppp-property. Then, as {c′, c′′} is not an edge for any c, there are |C| − |M |
components, and their vertex sets are a partition into |C| − |M | subsets of C
that have the ppp-property. Indeed, each component of (C,M) can contain at
most one edge from E2. If it does not contain one, the vertices are a chain and
thus have the ppp-property. If it contains an edge from E2, then all other vertices
are on two chains below the end vertices of that edge. So the vertices are covered
by two chains whose maximal elements form an edge in E2 and are therefore
separable. Thus, also in this case, the vertex set has the ppp-property and, by
Theorem 3.4, the corresponding set of columns admits a directed perfect path
phylogeny.

Let C1, . . . , Ck be a partition of C into subsets that have the ppp-property.
Each Ci gives rise to a matching of size |Ci| − 1 in the induced subgraph G[C ′

i ∪
C ′′

i ]. The union of these matchings is disjoint and, therefore, a matching of size
|C| − k. ut

The polynomial-time algorithm for ppp-partitioning is summarized in Fig-
ure 1. We now arrive at our main result:

Corollary 6.2. The ppp-partition problem can be solved in polynomial time.

7 Concluding Remarks

In this paper we studied the complexity of SNP block partitioning under the
perfect phylogeny model. We showed that although the partitioning problems
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are NP-hard for the perfect phylogeny model, they are tractable for the more
restricted perfect path phylogeny model. The contribution is two-fold. On the
theoretical side, this demonstrates again the power of the perfect path phylogeny
model. On the practical side, we present a block partitioning protocol that in-
tegrates the block partitioning phase and the haplotyping phase. We note, how-
ever, that there may be an exponential number of minimal partitions, and thus,
in order to choose the most biologically meaningful solution we might need to
consider also some other criteria for block partitioning. Future directions may
include testing the algorithm on real data, and comparing this method with
other block partitioning methods. Also, it would be interesting to explore the
space of optimal solutions in order to find the most relevant one.
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