
Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

Matrix Robustness, with an Applica-
tion to Power System Observability

Matthias Brosemann,1 Jochen Alber, Falk Hüffner,2

and Rolf Niedermeier

abstract. We initiate the study of the computational complexity
of Matrix Robustness: Check whether deleting any k rows from a
full-rank matrix does not change the matrix rank. This problem is
motivated by applications in observability analysis of electrical power
networks. We indicate the coNP-completeness of Matrix Robust-

ness, provide linear programming based solutions (both exact and
heuristic) and a problem-specific algorithm, and present encouraging
experimental results.

1 Introduction

Observability analysis is a key issue in the management of power systems:
Energy supply companies continuously monitor the power flow of their elec-
trical network such that, e.g., in the event of an unexpected behavior emer-
gency actions can be initiated. In order to retrieve the state of the power
system in operation, various electrical quantities in the network are repeat-
edly measured. The network is said to be observable if all system states can
be estimated based on the given measurements.

Checking whether the installed measurements suffice for estimating the
entire state of the system is known as observability analysis in the electrical
engineering literature (see [11] for an overview). In this paper, we follow
a recently proposed approach for observability analysis [1]. There, it is
shown that the network is observable iff the rank of a corresponding discrete
sensitivity matrix that is derived from the electrical specification of the
network is full. Based on this new correspondence, we can extend the classic
observability analysis scenario to the practically important scenario where
one asks whether the network states remain observable even if up to k
arbitrary meters (corresponding to matrix rows) fail.

1Supported by the Deutsche Forschungsgemeinschaft (DFG), project PEAL (param-
eterized complexity and exact algorithms), NI 369/1.

2Supported by the DFG, Emmy Noether research group PIAF (fixed-parameter algo-
rithms), NI 369/4.

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

2 Brosemann, Alber, Hüffner, and Niedermeier

Matrix Robustness

Instance: An m × n matrix M over an arbitrary field
�

with
full rank n, m ≥ n, and an integer k > 0.
Question: Is M robust against deletion of k rows, that is, is
the rank of M preserved if any k rows are deleted?

For convenience, we sometimes consider Matrix Weakness, the com-
plement of this decision problem, that is, the question whether we can find k
rows such that when they are deleted, the matrix drops in rank.

2 Complexity of Matrix Robustness

In this section, we show that Matrix Weakness is many-one equivalent to
the Generalized Minimum Distance problem from coding theory [13],
while preserving the underlying fields. This implies that Matrix Robust-

ness is coNP-complete for finite fields, and makes it plausible that it is also
coNP-complete for infinite fields as they are used in our application.

We show the equivalence of Matrix Weakness and Generalized

Minimum Distance via the Generalized Minimum Circuit problem
from matroid theory [12] as an intermediate step.

Generalized Minimum Circuit

Instance: An m × n matrix M over an arbitrary field and a
positive integer k.
Question: Is there a linearly dependent subset of the column
vectors of M with at most k elements?

For this, we need some definitions and observations from matroid the-
ory [12].

DEFINITION 1. Consider a ground set E and its power set P(E). A pair
M = (E, I) with I ⊆ P(E) is called a matroid if

(I1) ∅ ∈ I,

(I2) A ∈ I, B ⊆ A ⇒ B ∈ I, and

(I3) A, B ∈ I, |B| > |A| ⇒ ∃a ∈ B \ A : A ∪ {a} ∈ I.

A set A ∈ I of a matroid (E, I) is called independent set. Conversely, a set
A ⊆ E with A /∈ I is called dependent set. A set B ∈ I is a basis if B is
a maximal independent set of M , i. e., ∀B′ ∈ I : B ⊆ B′ ⇒ B′ = B. A
dependent set C is called a circuit if C is a minimal dependent set of M ,

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

Matrix Robustness, with an Application to Power System Observability 3

i. e., ∀C′ (C : C′ ∈ I. The cardinality of a basis of a matroid is called the
rank of this matroid (it is easy to prove that all bases have the same size).

To get a connection to Matrix Weakness, we now focus on matroids
that represent a set of vectors.

DEFINITION 2. Let A be an m × n matrix over a field
�

, let E be a set
of column labels of A, and let I be the set of subsets of E that represent
sets of linearly independent column vectors of A. The tuple (E, I) is then
called the vector matroid M [A] of A.

A central proof tool in matroid theory is the concept of duality.

DEFINITION 3. The dual matroid M∗ = (E, I∗) of the matroid M =
(E, I) is defined by the set of its independent sets

I∗ = {X ⊆ E : ∃ basis B of M with B ∩ X = ∅}.

Two results from matroid theory are that the dual matroid is a matroid,
and that the duality is closed over the set of vector matroids [12]. With this
we can now state the following theorem.

THEOREM 4. Matrix Weakness on a field
�

is many-one equivalent
to Generalized Minimum Circuit on

�
. The matrices of both problems

can be transformed into each other in polynomial time.

Proof. At first we consider the input matrix M of Matrix Weakness

in its transposed form A := MT , asking whether there is a set of column
vectors of A such that the matrix drops in rank when they are deleted.

Next we consider equivalently the vector matroid M [A] = (E, I) and ask
whether we are able to find k elements of E such that the matroid drops in
rank when they are deleted. We can do this because the independent sets
of A and M [A] are equal (up to different labeling).

Now if we have such k elements—say as a set L—getting the matrix to
drop in rank when they are deleted, then all bases of M [A] have a nonempty
intersection with L, since otherwise M [A] is still of full rank after the dele-
tion of the k elements. Conversely, if there is a set L with k elements of E
having a nonempty intersection with each basis of M [A], then these k ele-
ments can be deleted to get the matrix to drop in rank. Hence, the question
whether there are k elements in E so that the matroid drops in rank when
they are deleted is equivalent to the question whether there is a set L with
k elements that has a nonempty intersection with each basis of M [A].

Further, such a set L is a dependent set of the dual matroid of M [A]. So
it is equivalent to ask whether there is a dependent set of the dual matroid
of M [A] containing k elements. This is in fact the problem Generalized

Minimum Circuit if we consider the matrix form of the dual of M [A].

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

4 Brosemann, Alber, Hüffner, and Niedermeier

Besides the equivalence between both problems we have to consider the
runtime of matrix operations used in the proof above. The transpose of a
matrix can be calculated in polynomial time, and it is well-known that the
Gaussian elimination of an n×m matrix of rank r to the form [Ir|D], where
Ir is the r×r identity matrix and D an arbitrary r× (m−r) matrix, can be
done in polynomial time, too, and does not change the set of independent
vectors. In addition, it is proved in matroid theory (see [12]) that the dual
of the vector matroid [Ir |D] is the vector matroid of [−DT |Im−r]. Thus, all
the transformations used above can be done in polynomial time. �

We now demonstrate that Generalized Minimum Circuit is equiva-
lent to Generalized Minimum Distance, completing the chain of equiv-
alences from Matrix Weakness to Generalized Minimum Distance.
The Minimum Distance problem is a problem from coding theory: A lin-
ear code is a subspace of a vector space

�
n over a field

�
. The Hamming

weight wt(x) of a vector x ∈
�

n is the number of nonzero entries of x. In tra-
ditional coding theory, only vector spaces over finite fields such as GF(2) are
considered. However, the sensitivity matrix from our application is over the
infinite field � , and we defined Matrix Robustness for arbitrary fields.
Therefore, we need a generalization of the Minimum Distance problem to
arbitrary fields.

Generalized Minimum Distance

Instance: An m × n matrix H over an arbitrary field
�

and
integers n, k > 0.
Question: Is there a nonzero vector x ∈

�
n of weight wt(x) ≤ k

with H · x = 0?

The equivalence of Generalized Minimum Circuit and Generalized

Minimum Distance is now easy to see. Together with Theorem 4, we
obtain the central result of this section.

THEOREM 5. Matrix Weakness is equivalent to Generalized Mini-

mum Distance.

Since it is known that Generalized Minimum Distance is NP-complete
for any finite field [13], we obtain the following for the complement of Ma-

trix Weakness.

COROLLARY 6. Matrix Robustness is coNP-complete for any finite
field.

Unless RP = NP, there is no polynomial-time constant factor approxima-
tion for Minimum Distance [6]. Since our reductions are approximation-

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

Matrix Robustness, with an Application to Power System Observability 5

preserving, the same holds for Matrix Robustness restricted to arbitrary
finite fields.

McCormick [10] claims NP-completeness for Generalized Minimum

Circuit on any infinite field. This would have settled the question for the
coNP-completeness of Matrix Robustness on infinite fields, too. Unfor-
tunately, although cited several times in the literature, the corresponding
reduction from Clique contains an error that is not obvious how to fix [2].

For the field GF(2), there are several polynomial-time probabilistic algo-
rithms [7, 9] for Minimum Distance, but as far as we know, there are no
algorithms for Generalized Minimum Distance.

3 Algorithms for Matrix Robustness

Matrix Robustness is coNP-complete for finite fields (Corollary 6). It
seems plausible that this still holds for infinite fields, over which the sensitiv-
ity matrix from our application is defined. Therefore, we develop algorithms
based on mixed integer programming (Sect. 3.1), and present several speed-
ups for it in Sect. 3.2. The employed ideas also lead to a linear programming
formulation, which can solve Matrix Robustness in provably polynomial
time, albeit without guarantees for the solution quality (Sect. 3.3). Further,
a relaxation of the notion of rank called pseudorank that has been previ-
ously suggested in the context of observability analysis leads to another
polynomial-time algorithm presented in Sect. 3.4.

3.1 Mixed Integer Formulation

It is convenient to reformulate our problem in terms of vector spaces. Be-
cause the input matrix is of full rank, its row vectors span an n-dimensional
space. If the rank is reduced by one, then the row vectors span an (n − 1)-
dimensional subspace, that is, a hyperplane. Hence, it is equivalent to
Matrix Weakness to ask whether there is a hyperplane containing n− k
row vectors. The other k vectors are those that have to be deleted to get
the matrix to drop in rank.

THEOREM 7. Matrix Robustness is solvable using Mixed Integer Pro-
gramming (MIP).

Proof. We are looking for a hyperplane H that includes as many row
vectors of the matrix as possible. To model whether a row vector yi lies
in H , we introduce binary variables di with the following characterization:
di = 0 iff yi lies in the hyperplane H. Given this, the goal is to minimize
the sum of the di’s. The hyperplane H we are looking for is represented by
its normal vector x. The only constraint x has to satisfy is that it must not
be the null vector. This requirement is considered at the end of this proof.

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

6 Brosemann, Alber, Hüffner, and Niedermeier

To test whether a vector yi lies in H , we use the scalar product 〈·, ·〉
between the row vectors and the normal vector: 〈yi, x〉 = 0 iff yi lies in the
hyperplane defined by x. This is implemented with the variables di and
two constraints per row vector: 〈yi, x〉 − di ≤ 0 and −1 · 〈yi, x〉 − di ≤ 0.
With the two additional preconditions ||yi|| ≤ 1 and ||x|| ≤ 1 it holds that
−1 ≤ 〈yi, x〉 ≤ 1. It is now easy to show that the binary variables di indeed
behave as desired.

The precondition ||yi|| ≤ 1 can be obtained by dividing every yj
i by ||yi||.

In contrast, ||x|| ≤ 1 has to be demanded explicitly in the formulation of
the MIP; it can be achieved with a simple constraint per component of x:
−1/n ≤ xi ≤ 1/n.

Finally, the precondition ||x|| > 0 (that is, x 6= 0) remains to be imple-
mented. But this cannot be achieved with simple inequalities, because it
is not a convex characteristic. It could be implemented by using quadratic
programming. However, solvers for quadratic programming are less readily
available, and the added expressive power makes them much slower. There-
fore, the approach we chose is to solve several MIPs. If x 6= 0, then there
must be at least one entry xi 6= 0 (w. l. o. g. xi > 0), and we can solve
the problem by solving n MIPs for i = 1 to n, each time adding the con-
straint xi ≥ c for a sufficiently small constant c that does not contradict the
constraint −1/n ≤ xi ≤ 1/n (e. g., xi ≥ 1/n). The solution for the input
instance is then the best solution from the n MIPs. �

3.2 Improvements for the MIP Formulation

The following improvements can speed up the overall solving process ex-
ploiting the fact that n very similar MIPs are solved in a loop for one input
instance.

Improvement 1: Exploitation of partial solutions. We want to de-
termine the global minimum over the solutions of all n MIPs and do this
by solving them successively. In this process, solutions of previously solved
MIPs can be used to constrain further MIPs, helping the solver to cut down
the search space. For this a new constraint is introduced:

∑

j=1,...,m dj ≤
kbest. Here, kbest is replaced by the currently best minimum from the pre-
vious subproblem (the first subproblem is solved without this constraint).

Improvement 2: Pairwise linear dependencies. Alber and Pöller sug-
gested to exploit pairwise linear dependencies between rows of the sensitivity
matrix [1]. We implement this idea in our context by a more invasive change
to the MIPs. The pairwise linear dependence of vectors is an equivalence
relation, and therefore partitions the input vectors into equivalence classes.
If one vector of such a class is deleted, then all other vectors from this class
have to be deleted, too, since otherwise the deletion cannot affect the ma-

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

Matrix Robustness, with an Application to Power System Observability 7

trix rank. Therefore, we can replace a class of pairwise linearly dependent
vectors by a representative vector, and in the objective sum give a weight to
each di equal to the cardinality of the corresponding class. Determination of
equivalence classes and weights can be done with a simple polynomial-time
preprocessing.

Improvement 3: Time limitation. To get a view at suboptimal results
at an early stage of the overall solving process, the solver is called for the n
MIPs with a defined runtime limit. All MIPs that were not solved are
enqueued. After one pass, all enqueued problems are attempted to be solved
again, but with a twice as large time-frame. This is repeated until all MIPs
are solved. The time required with this technique is at most three times
longer than without it, but quickly solvable subproblems are calculated
earlier.

The time-frame technique has further advantages arising from the com-
bination with the other speed-ups. For instance, the smallest reachable
minimum could be found earlier. Also (suboptimal) results are calculated
faster and can be used as bounds for other MIPs.

3.3 Linear Programming Formulation

Mixed integer programming is NP-hard, and therefore the method described
in Sect. 3.1 probably takes exponential time. Since Matrix Robustness

(over finite fields) is a coNP-complete problem, if we want a provably fast
(polynomial) algorithm, we probably have to lower our expectations with
respect to solution quality. To obtain a polynomial-time algorithm without
guarantee on solution quality, we again consider the hyperplane formulation,
where the goal is to find a hyperplane that contains as many row vectors
of the input matrix as possible. The idea is to successively eliminate the
“worst” vectors, that is, those most “unlikely” to be in the goal hyperplane,
until all of the remaining vectors lie in a hyperplane.

For this, we iteratively consider the consensus hyperplane that minimizes
the sum of the scalar products between each row vector of the input ma-
trix and the normal vector of the hyperplane. The vector with the largest
absolute value of its scalar product to the normal vector of the consensus
hyperplane is eliminated. This is repeated until all remaining vectors lie in
the consensus hyperplane.

To find the consensus hyperplane, we can use a linear program (LP)
very similar to the MIP from Sect. 3.1. The only difference is that the
variables di now are real instead of binary; they now measure the “degree
of containedness” instead of deciding containedness in the hyperplane. We
overcome the obstacle of the nonconvex constraint ||x|| > 0 in the same way
as for the MIP by solving n LPs. Since each LP is solvable within polynomial

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

8 Brosemann, Alber, Hüffner, and Niedermeier

time, and we repeat the search for the worst vector only n times, the overall
algorithm has a polynomial runtime.

The preprocessing of eliminating pairwise linear dependencies (Sect. 3.2,
Improvement 2) can also be applied to this linear programming formulation.

3.4 Pseudorank-Based Algorithm

Alber and Pöller [1] introduced the concept of a pseudorank of a matrix,
which is a cheap to calculate upper bound to the rank of the matrix. They
observed that using pseudorank instead of rank for the observability of net-
works is sufficient in the practical settings they considered. We show that
Matrix Robustness with respect to the pseudorank (that is, given a m×n
matrix deciding whether the pseudorank remains at least n when deleting
any k rows) can be solved in polynomial time.

The pseudorank is defined as the minimum of the number of rows and
the number of columns after exhaustive elimination of pairwise linear de-
pendencies (as described in Sect. 3.2 (Improvement 2)) both within rows
and within columns. It can be calculated by eliminating all pairwise linear
dependencies within the rows, then within the columns, and then repeating
this until no further change takes place. Hence, the pseudorank is an upper
bound to the rank. Therefore, if a matrix is robust against deletion of k
rows, then it is pseudorank robust, too.

If we do not want to calculate the pseudorank, but just decide whether
it is full, it suffices to do a single elimination pass over the rows followed
by a single elimination pass over the columns: If columns were deleted,
then the pseudorank is not full; otherwise, the situation of the rows remains
unchanged and no further passes are required. The idea of our algorithm for
pseudorank robustness is to follow this simple scheme, but take into account
that any k rows are being deleted first, without trying all

(

m

k

)

possibilities
explicitly.

THEOREM 8. Matrix Robustness with respect to the pseudorank can
be solved in O(s ·m log m) time for an m×n-matrix, where s is the number
of nonzero matrix entries.

Proof. As explained, if an m× n-matrix M is to be not robust in terms of
pseudorank, then one of three conditions must hold:

1. After deleting k rows and then eliminating pairwise linearly dependent
rows, there are less than n rows left.

2. After deleting k rows, there are two dependent columns.

3. After deleting k rows, there is a zero column.

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

Matrix Robustness, with an Application to Power System Observability 9

We delete zero rows upfront, since they do not affect the worst-case sce-
nario, and then check the three conditions successively. Conditions 1 and 3
are easy to check. We check Condition 2 separately for all pairs (Mi, Mj)
of columns, that is, we try to determine a factor c such that Mj = c · Mi

after deleting k rows. For a row r, there are three cases:

• Mri 6= 0 and Mrj 6= 0. Then c = Mrj/Mri, or r needs to be deleted.

• Exactly one of Mri and Mrj is 0. Then r needs to be deleted in any
case.

• Mri = Mrj = 0. Then it is never necessary to delete r.

Therefore, we determine all possible factors for rows r with Mri 6= 0 and
Mrj 6= 0. If the number of rows that require a different factor than the most
frequent one plus the number of rows where exactly one of Mri and Mrj

is 0 exceeds k, then the columns i and j cannot be made linearly dependent
by deleting at most k rows; otherwise M is not robust with respect to the
pseudorank.

We omit the details of the runtime analysis. �

4 Experimental Results and Conclusions

We implemented the MIP formulation from Sect. 3.1 and the LP formu-
lation from Sect. 3.3, including the improvements from Sect. 3.2, and the
pseudorank algorithm from Sect. 3.4, and tested them on real and syn-
thetic instances. The MIPs and LPs themselves are implemented in the
GNU MathProg modeling language and solved by the solver glpsol from the
GNU Linear Programming Kit. The pseudorank heuristic is implemented
as a Python script. The testing machine is an AMD Athlon 64 3400+ with
2.4GHz, 512KB cache, and 1GB main memory, running under the Debian
GNU/Linux 3.1 operating system.

Calculating Matrix Robustness of Electrical Networks. Four net-
works are mostly designed for testing purposes (“IEEE” is from a benchmark
by the IEEE); the fifth is based on the Namibian power network operated
by NamPower. The discretization of the resulting sensitivity matrix is to
the integer interval {−9, . . . , 9}, except for the Namibian network, where
the sensitivity matrix is discretized to the interval {−999, . . . , 999}. These
intervals are chosen based on numerical properties of the matrices.

The results and runtimes of both the exact algorithm with different speed-
ups and the heuristics are shown in Table 1. Clearly, exploiting upper
bounds (Improvement 1) and exploiting equivalence classes (Improvement 2)
is always worthwhile. With these improvements, the MIP can solve all
instances optimally within reasonable time. For the MIP, the runtime is not

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

10 Brosemann, Alber, Hüffner, and Niedermeier

Table 1. Runtimes for some Matrix Robustness instances. Dimension
is after elimination of all-zero rows, Dimension/EC (equivalence classes)
after additionally subsuming pairwise dependent vectors. The result is the
number of rows that have to be deleted to get the matrix to drop in rank. For
the runtimes, simple means plain algorithm without speed-up techniques,
EC means exploiting equivalence classes, and UB means exploiting upper
bounds determined by previous MIPs in a pass. Finally, LP is the runtime
for the linear programming based approach and PR the runtime for the
pseudorank heuristic.

Dimension Result Runtime in seconds

EC opt. LP Simple EC UB EC&UB LP PR

Treelike 18×8 8×8 2 2 0.07 0.05 0.08 0.05 0.04 0.02
MV/LV 78×12 23×12 2 2 1.25 0.18 0.40 0.15 0.14 0.04
Nine-Bus 40×12 28×12 4 12 982.29 26.09 33.26 17.61 1.15 0.03
IEEE 150×29 45×29 2 6 11.74 1.41 4.01 1.18 3.32 0.15
Namibia 411×164 306×164 1 7 — — 687.02 477.09 1426.06 4.70

alone determined by the size of the input, as can be seen when comparing
“Nine-Bus” and “IEEE”. Although larger, the latter is solved much quicker,
possibly because of the significantly higher sparsity (ratio of zero entries
in the sensitivity matrix). The pseudorank based algorithm achieves an
optimal result for all instances, while the LP method gives rather bad results
for some instances.

Note that the column “Result” in Table 1 shows that for our current
real-world instances the solution sizes are rather small and probably com-
plete enumeration of row subsets in order of increasing size would work as
well. However, larger solution sizes are conceivable, and therefore we study
randomly generated instances with larger solution sizes in what follows.

Test Results with Synthetic Input Data. To get a better impression
of the range of problems where we can employ the exact MIP based algo-
rithm as opposed to the heuristics, and to estimate the solution quality of
the heuristics, we tested the algorithms on random instances. For this, we
generated matrices with random entries and dimension, sparsity, and entry
range similar to that from our real-world instances. The results are shown
in Fig. 1. Clearly, these random instances are harder than the real-world
instances. We can also clearly see the expected exponential runtime of the
exact MIP algorithm. For n > 13, the MIP formulation is no longer feasible
and we have to use one of the heuristics, which can still solve problems
with n = 45 within a few minutes. Moreover, runtimes are much more pre-

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

Matrix Robustness, with an Application to Power System Observability 11

4 6 8 10 12 14 16 18 20
n

10-2

10-1

1

101

102

103

ru
nt

im
e

in
 s

ec
on

ds (b)

(a)

(c)

(a) MIP algorithm

(b) LP heuristic

(c) Pseudorank heuristic

4 6 8 10 12 14 16 18 20
n

2

4

6

8

10

12

14

nu
m

be
r

of
 d

el
et

ed
 r

ow
s

(a)

(b)
(a) MIP algorithm/pseudorank heuristic

(b) LP heuristic

Figure 1. Runtime and solution quality for random matrices of size 5n× n,
with entries from {−9, . . . , 9} and 80% sparsity. Each point is an average
over 20 random instances.

dictable for the heuristics, with the standard deviation being only 22% for
the LP heuristic and 7% for the pseudorank heuristic as opposed to 128%
for the MIP for n = 13.

In all tested instances the pseudorank heuristic produced an optimal re-
sult. The LP heuristic was optimal for 81% of the instances, but was
sometimes off by up to 50% (see Fig. 1 (right)).

Summary and Recommendations. It seems advisable to start with the
MIP algorithm, which gives provably optimal results and can solve many
practically relevant instances. If this takes too long, the pseudorank algo-
rithm is the best choice, since it was superior in both runtime and quality
to the LP based method for all instances. However, our method of gener-
ating random instances might favor the pseudorank algorithm, since sets of
linearly dependent vectors that do not contain pairwise linearly dependent
vectors are unlikely. Therefore, in some scenarios “consensus hypeplane”-
based methods, possibly with improved efficiency as compared to the LP
method, might be superior.

Future Challenges. An immediate open question is to find out whether
Matrix Robustness remains coNP-complete in case of infinite fields. To
investigate polynomial-time approximation algorithms with guaranteed ap-
proximation ratio is open. Downey et al. [5] conjectured that an equivalent
problem is parameterized intractable with respect to parameter k. Thus,
can W[1]-hardness [4] be shown for Matrix Robustness with respect to
parameter k? From an application point of view, it would make sense to

Proc. 2nd ACiD-06, Vol. 7 Algorithmics, pp. 37-48, College Publications, 2006

12 Brosemann, Alber, Hüffner, and Niedermeier

further distinguish between meters with different degrees of reliability. Fi-
nally, it would be interesting to closer investigate the connection with meter
placement problems such as studied in [3, 8].

Acknowledgment. We thank Geoff Whittle (Victoria University of Well-
ington, NZ) for helpful suggestions for the material in Sect. 2.

BIBLIOGRAPHY
[1] J. Alber and M. Pöller. Observability of power systems based on fast pseudorank

calculation of sparse sensitivity matrices. In Proc. IEEE Power Engineering Society:
Transmission and Distribution Conference, 2005.

[2] M. Brosemann. Matrix robustness: Algorithms, complexity and an application in
network observability (in German). Diplomarbeit, Institut für Informatik, Friedrich-
Schiller-Universität Jena, 2006.

[3] D. J. Brueni and L. S. Heath. The PMU placement problem. SIAM Journal on
Discrete Mathematics, 19(3):744–761, 2005.

[4] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
[5] R. G. Downey, M. R. Fellows, A. Vardy, and G. Whittle. The parametrized complex-

ity of some fundamental problems in coding theory. SIAM Journal on Computing,
29(2):545–570, 1999.

[6] I. Dumer, D. Micciancio, and M. Sudan. Hardness of approximating the minimum
distance of a linear code. IEEE Transactions on Information Theory, 49(1):22–37,
2003.

[7] A. Foster. A polynomial-time probabilistic algorithm for the minimum distance of an
arbitrary linear error-correcting code. Honors Thesis, United States Naval Academy,
Annapolis, 2003.

[8] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi, and M. A. Henning. Domination
in graphs applied to electric power networks. SIAM Journal on Discrete Mathematics,
15(4):519–529, 2002.

[9] J. S. Leon. A probabilistic algorithm for computing minimum weights of large error-
correcting codes. IEEE Transactions on Information Theory, 34:1354–1359, 1988.

[10] S. T. McCormick. A combinatorial approach to some sparse matrix problems. PhD
thesis, Stanford University, Stanford, California, 1983. Published in SOL 83-5.

[11] A. Monticelli. Electric power system state estimation. Proceedings of the IEEE,
88(2):262–282, 2000.

[12] J. G. Oxley. Matroid Theory. Oxford University Press, 2004.
[13] A. Vardy. The intractability of computing the minimum distance of a code. IEEE

Transactions on Information Theory, 43(6):1757–1766, 1997.

Matthias Brosemann, Falk Hüffner, Rolf Niedermeier

Institut für Informatik, Friedrich-Schiller-Universität Jena, Ernst-Abbe-
Platz 2, D-07743 Jena, Germany

{matthias.brosemann,hueffner,niedermr}@minet.uni-jena.de

Jochen Alber

DIgSILENT GmbH, Power System Applications & Consulting, Heinrich-
Hertz-Straße 9, D-72810 Gomaringen, Germany

j.alber@digsilent.de

