INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXILIARY PUSHDOWN AUTOMATA AND
SEMI-UNBOUNDED FAN-IN CIRCUITS*

ROLF NIEDERMEIER AND PETER ROSSMANITH

Fakultat fur Informatik
Technische Universitat Munchen
80290 Munchen
Federal Republic of Germany

*This research was supported by the Deutsche Forschungsgemeinschaft, SFB 342, Teilprojekt A4
“KLARA”.

This paper is a revised and expanded version of a paper (Lange and Rossmanith, 1990)
presented at the International Conference “Mathematical Foundations of Computer Science”
held in Banskd Bystrica, Czechoslovakia, August 27-31, 1990 and of a paper (Niedermeier
and Rossmanith, 1992) presented at the International Conference “Latin American Theoretical
INformatics” held in Sdo Paulo, Brazil, April 6-10, 1992.

Version 2.20 — last changed 4/6/93 16:55:16 (Version 1.8 of complexity.tex)

1

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

ROLF NIEDERMEIER AND PETER ROSSMANITH
Proposed running head: Unambiguous AuxPDAs and Circuits
Address for correspondence:

Peter Rossmanith

Technische Universitat Munchen
Fakultat fur Informatik
Arcisstr. 21

80333 Munchen 2

Fed. Rep. of Germany

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 3

Abstract

Notions of unambiguity for uniform circuits and AuxPDAs are studied and related
to each other. In particular, a coincidence for counting and unambiguous versions
of AuxPDAs and semi-unbounded fan-in circuits is shown. Moreover, an improved
simulation of LOGUCFL (the class of languages logspace many-one reducible to
unambiguous context-free languages) by unambiguous circuits and AuxPDAs is
developed. Next, an inductive counting technique on semi-unbounded fan-in circuits
is presented and employed for several applications, especially an alternative proof
for the closure under complementation of LOGCFL. A cost-free simulation of
polynomially ambiguity bounded AuxPDAs by unambiguous ones is given. A first
nontrivial upper bound for a circuit class defined by Lange and its closure under
complementation are indicated. Finally, a normal form for AuxPDAs is investigated.
Inter alia it is shown that for unambiguous AuxPDAs operating in polynomial time
and logarithmic space a push-down height of O(log®n) suffices, thus paralleling
results for deterministic and nondeterministic AuxPDAs. It is pointed out that
without loss of generality the underlying machines of the most important AuxPDA
classes work obliviously.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

4 ROLF NIEDERMEIER AND PETER ROSSMANITH

1. INTRODUCTION

The major aim of computational complexity theory is to decide which problems
are efficiently solvable. To tackle this question, in general three cases are

distinguished (Parberry, 1987):

(a) Efficiency in the sequential case means polynomial time computations,

(b) efficiency in the parallel case with unlimited parallelism leads to complexity
classes within polylogarithmic space due to the parallel computation
thesis (Goldschlager, 1982).

(c) efficiency in the parallel case with a limited amount of hardware, i.e., a
polynomial number of processors, yields the class of problems commonly

called NC.

In all three cases the nondeterminism vs. determinism problem plays a decisive role
for the development of efficient algorithms.

In this paper we will deal with classes within the NC-hierarchy. NC is a fairly robust
class. It was introduced by Pippenger (1979) and named by Cook (1979). NC can
be characterized in terms of several parallel models, in particular PRAMs (Fortune
and Willie, 1978; Goldschlager, 1978), alternating Turing machines (Chandra et al.,
1981), uniform circuits (Borodin, 1977; Ruzzo, 1981), and polynomially time bounded
auxiliary push-down automata (AuxPDAs) (Cook, 1971). For the question of
determinism vs. nondeterminism within NC AuxPDAs are the most suitable model.
An AuxPDA is a space bounded Turing machine with an additional unbounded
push-down store. Since AuxPDAs are special Turing machines we immediately have
deterministic and nondeterministic versions. For the moment, we only consider
AuxPDAs that are simultaneously logarithmically space bounded and polynomially
time bounded. These machines show strong relations to context free languages
(CFLs) or, to be more precise, to their closure under log-space many-one reductions:
Sudborough (1978) characterized LOGCFL by nondeterministic AuxPDAs and
LOGDCFL by deterministic AuxPDAs. So the question of nondeterminism vs.

determinism can be stated as LOGDCFL = LOGCFL. One obvious approach to this
question is to investigate a natural concept between these two: wunambiguity. The
concept of unambiguity took its origin in the theory of formal languages, where the
demand for the existence of at most one derivation tree led to the consideration
of unambiguous CFLs (UCFLs). In this way we naturally get LOGUCFL as a
class between LOGDCFL and LOGCFL, whose relation to AuxPDA classes and the
NC-hierarchy will be investigated in this paper. In the field of polynomial time the
concept of unambiguity led to UP introduced by Valiant (1976), for space bounded
computation we have e.g. UL (Alvarez and Jenner, 1993; Buntrock et al., 1991). UP
(resp. UL) consists of those languages accepted by polynomially time bounded (resp.
logarithmically space bounded) Turing machines which have at most one accepting
computation path. Machines restricted in this way are commonly called unambiguous.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 5

Whereas UP and UL already obtained considerable attention, the task of this work
will be to investigate unambiguity for AuxPDAs, i.e., within the NC-hierarchy.

Recently, another approach towards unambiguity in the NC-hierarchy was made
by Lange (1993). He defined unambiguous circuits in order to provide the up to
then lacking characterization of CREW-PRAMs in terms of circuits. And indeed, he
characterized CREW-PRAMs by an unambiguous version of AC-circuits, thus ending
the isolation of this important PRAM class. Note that in contrast to CRCW-PRAMs
(Stockmeyer and Vishkin, 1984) and CROW-PRAMs (Dymond and Ruzzo, 1986)
up to then no characterization of CREW-PRAMs by another computational model
was known. A first hint for the “unambiguous behavior” of CREW-PRAMs was
given earlier by Rytter (1987), who showed that LOGUCFL is contained in the class
of languages recognized by CREW-PRAMs in logarithmic time using polynomially
many processors. The central idea of Lange’s definition of unambiguous circuits
is the introduction of vulnerable gates, i.e., gates which may receive at most one
input with value 1 (in the case of OR-gates) resp. 0 (in the case of AND-gates).
However, this definition seems to differ considerably from the conventional notion of
unambiguity for automata given above. Thus in this work we introduce so-called
weakly unambiguous circuits, which, by definition, have at most one accepting
subtree. And indeed it will turn out that those circuits capture the conventional
notion of unambiguity for AuxPDAs. On the other hand, we introduce the notion
of strong unambiguity for automata, which corresponds to Lange’s definition of
unambiguous circuits. In this way one of the implicit consequences of this work will
be the demand for two notions of unambiguity — one for the world of NC, i.e., strong
unambiguity, and one for the sequential world, i.e. (weak) unambiguity.

In the following we provide a survey on the internal structure of the paper
including concise statements of the main results. In the next section all the basic
notions and definitions needed are supplied. Afterwards, in Section 3, we introduce
strong and weak unambiguity and some generalizations for circuits as well as for
AuxPDAs.

In Section 4 we develop new, improved simulations between semi-unbounded
fan-in circuits and AuxPDAs. The major aim of this section is to ameliorate
Venkateswaran’s equality SAC* = NAPDA* (Venkateswaran, 1991) first of all in
order to get simulations where one accepting computation is simulated by one
accepting subtree. This is necessary to provide simulations between the corresponding
unambiguous models. Venkateswaran’s simulation does not have this property.
By way of contrast, it is well known that most reductions between NP-complete
problems preserve the number of solutions. For example, this holds for the
satisfiability problem or Hamiltonian paths. Unfortunately, this is not true at all in
the case of SAC! and NAPDA!. Venkateswaran’s simulation of AuxPDAs by circuits
incorporates a number of accepting subtrees which exceeds the original number of
accepting paths tremendously. Our improved simulation will yield the equality of

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

6 ROLF NIEDERMEIER AND PETER ROSSMANITH

the counting versions of the above classes for k = 1, i.e., #SAC* = #APDA"! and
provides characterizations of weakly and strongly unambiguous AuxPDAs by their
semi-unbounded fan-in counterparts in the field of circuits. Note that to get an
analogous result to SAC' = NAPDA' in the unambiguous world is particularly
useful, since such a simulation result allows to study properties of unambiguous
AuxPDAs in the context of a static, combinatorial model. A further result of
Section 4 will be the inclusion of LOGUCFL in a strongly unambiguous circuit class.
On the one hand this improves a result of Lange (1993), where only the inclusion
of LOGDCFL in this class could be shown. On the other hand, it also ameliorates
Rytter’s inclusion LOGUCFL C CREW! (Rytter, 1987), since the above circuit class
is clearly included in CREW™.

In Section 5 a new inductive counting technique for semi-unbounded fan-in circuits
is presented, which due to the characterization results of Section 4 enables the
counting of accepting paths of an AuxPDA. For a lot of problems the ability
to guess nondeterministically is a crucial prerequisite for solving them efficiently.
However, nondeterministic computations involve up to exponentially many accepting
computations. There may be problems which are really in need of such an abundance
of nondeterminism, but there also may be problems where a smaller amount of
nondeterminism, say a polynomially bounded number of computation paths between
arbitrary configurations, suffices. Simulations of nondeterminism by determinism are
known only by machines which need drastically more resources. This is true for space
bounded, time bounded, and AuxPDA classes. The best known results in these
settings are

(a) NP C DEXP,

(b) NL C DSPACE(log® n),

(c) NAPDA' C DAPDAZ
Until now it is still not clear whether the simulation of nondeterministic AuxPDAs
can be done efficiently by deterministic ones when the ambiguity is limited.
Notwithstanding, we will show that an unambiguous AuxPDA can simulate a
nondeterministic one much better than a deterministic one if the degree of
nondeterminism is not too high. It is proved that polynomial ambiguity bounded
AuxPDAs operating in polynomial time and logarithmic space can be simulated
by unambiguous ones within the same time and space bounds. A similar result
for space bounded computations was obtained by Buntrock et al. (1993). However,
here unambiguous computations beat deterministic ones only for sub-polynomial
ambiguity*, and a simulation without space and time penalty is only possible for
constant ambiguity. Our simulation can deal with polynomial ambiguity with neither

*Buntrock et al. (1993) regarded the special case of polynomial ambiguity as the most
interesting one. Nevertheless, in (Buntrock et al., 1991) it was shown that in this case even a
simulation by deterministic AuxPDAs (instead of unambiguous AuxPDAs) within the same time
and space bounds exists.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 7

time nor space penalty. In addition, there are exceptions where our simulation
technique still yields better results: For a certain class of semi-unbounded fan-in
circuits defined in (Lange, 1993) which even involve exponential ambiguity (i.e.,
an exponential number of accepting subtrees which is the highest number possible
even for unambiguous circuits) nevertheless a “cost-free” simulation by unambiguous
AuxPDAs is possible. This answers an open question posed by Lange. In addition, it
is demonstrated that this circuit class is closed under complementation. Finally, it
should be noted that a corollary to the basic inductive counting lemma of this section
provides a new proof for the closure under complementation of SACF (and, as a
consequence, of LOGCFL), a result due to Borodin et al. (1989).

In Section 6 some new normal form theorems for AuxPDAs are proved and several
old ones are improved. In particular, we show that deterministic, nondeterministic,
strongly and weakly unambiguous AuxPDAs work without loss of generality
obliviously. That is, the movements of all working-heads do not depend on the
input except its length. Prior to this, we obtain the restriction of push-down
heights especially for unambiguous AuxPDAs. These effects all are enabled by the
characterizations of AuxPDAs by circuits and complete results given in (Dymond
and Ruzzo, 1986) and (Ruzzo, 1980).

In the end, in Section 7, we will briefly recapitulate the main techniques and
results of this work. Moreover, we discuss perspectives for future work and remaining
open questions.

2. PRELIMINARIES

We assume familiarity with basic facts and definitions of structural complexity
theory as to be found in (Balcdzar et al., 1990), (Hopcroft and Ullman, 1979),
or (Wagner and Wechsung, 1986). In order to keep the paper readable for the
nonspecialist reader, here we provide the central notions used in this work.

Without loss of generality, we will only consider languages over alphabet {0, 1}
whose symbols also will be interpreted as Boolean values true and false.

PRAMs (parallel random access machines), introduced by Fortune and Willie (1978)]
and Goldschlager (1978), only play a minor role in this paper. So we only define the
PRAM-complexity classes and refer to the literature, e.g., (Karp and Ramachandran,
1990; Parberry, 1987), for details. PRAMs are classified accordingly to the settlement
(concurrent (C), exclusive (E), owner (O)) of read and write conflicts on global
memory. With XRYW* k > 1,X,Y € {C, E, O} we denote the classes of languages
which are recognizable in time O(logk n) by XRYW-PRAMs using polynomially
many processors.

(Boolean) Clircuits are one of the two fundamental computational models of this
paper. A circuit for inputs of size n is an acyclic directed graph whose nodes (called
gates) are labeled with Boolean operators. Nodes of indegree zero are labeled from
the set {0,1,z1,%1,... ,Zn, Tn}, where z1,...,z, are the input nodes of the circuit

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

8 ROLF NIEDERMEIER AND PETER ROSSMANITH

and z; (1 <t < n) denotes the negated value of ;. All the other nodes are labeled as
either AND- or OR-gates. Note that we do not include negation gates in circuits. In
general, due to De Morgan’s laws this means no restriction, because we can ‘push’
negations to the input gates. However, it is a restriction for so-called semi-unbounded
fan-in circuits. Since we are only interested in circuits accepting languages, our
circuits have exactly one node with outdegree zero, that is the output gate. A circuit
accepts a string w € {0,1}™ iff its output gate evaluates to 1 on input w. Observe
that in the context of circuits one often speaks of fan-in (resp. fan-out) instead of
indegree (resp. outdegree). The size of a circuit is the number of gates it contains.
The depth 1s the length of the longest directed path from some input gate to the
output gate.

A circuit family {C, | n € IN} is an infinite set of circuits, where C, is a circuit
for inputs of size n. An important requirement for circuits is that of uniformity. A
circuit family {C,, | n € IN} is called logspace-uniform iff there exists a deterministic
Turing machine which computes a function n — (C,,) (where (C,) is an encoding of
circuit C,,) in space log n (see (Ruzzo, 1981) for details).

Next, we define three basic circuit complexity classes. We distinguish between the
fan-in allowed for AND- and OR-gates. That is, unbounded fan-in means that all
gates may have unbounded (non-constant) indegree, bounded fan-in means that all
gates have to have constant indegree (w.l.o.g. indegree two), and semi-unbounded
fan-in means that OR-gates may have unbounded fan-in, but AND-gates have
bounded fan-in. So we have NCF (resp. SACF, ACk), k > 1, as the classes of
languages recognized by polynomial size, O(logk n) depth bounded, logspace-uniform
circuits with bounded (resp. semi-unbounded, unbounded) fan-in.

The following normal form for circuits will be of central importance for some of the
proofs in this paper. A circuit C is called leveled if all gates of C' in depth d receive
their inputs only from gates in depth d — 1. This normal form is easily achieved for
the above defined circuit classes.

Proposition 1. For NC*, SAC*, and ACF it can be assumed that only leveled circuits
are used.

Proof. (construction) Let C be a (non-leveled) circuit and let C' denote an equivalent,
leveled circuit to be constructed. For each depth of C' we make a replica of each gate
of . This again yields polynomial size and the same depth as C'. The replicas are
constructed as follows:

(1) In depth 0, there are only inputs and constant gates. The replicas of AND-
and OR-gates are gates with constant value 0.

(2) In depth ¢ > 0, the replica of an AND-gate (resp. an OR-gate) of C again is an
AND-gate (resp. OR-gate) whose inputs are the replicas in depth ¢ — 1 of the
inputs of the “original” gate in C. The replicas of input and constant gates

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 9

simply are fan-in two AND-gates whose inputs are the replicas in depth 2 — 1
of the “original” gates.

The equivalence of C' and C with respect to the recognized languages can be proved
by a simple induction on the circuit depth. [

A similar construction is used in (Borodin et al., 1989), where an even stronger
normal form is generated. It is easy to see that an analogous result to Proposition 1
also holds for most of the circuit classes defined in the next section.

The second fundamental computational model in this work are auziliary push-down
automata (AuxPDAs) introduced by Cook (1971). An AuxPDA is a Turing machine
with unrestricted push-down store in addition to the working tape. We will consider
AuxPDAs with simultaneous bounds on time and space. Observe that the space
on the push-down store is “free”, i.e., it does not count for the space bound. In
this paper we will concentrate on AuxPDAs with a polynomial running time and a
poly-log space working tape.

As in the case of circuits, we will examine AuxPDAs given in some normal form.
As usual, we require that accepting computations always end up with an empty
push-down, an empty working tape, all heads at a fixed position and an uniquely
determined final state. Altogether, this means that we have exactly one accepting
configuration. Furthermore, we require the AuxPDAs always to push on or pop from
the push-down in each computation step. Observe that these demands do not mean
any restrictions for nondeterministic or deterministic AuxPDAs.

An important notion for AuxPDAs is that of surface configurations (Cook, 1971).
A surface configuration of an AuxPDA consists of the topmost symbol on the
push-down store, the actual state, the contents of the working tape, and the positions
of the heads. Please note that in this way we exclude the contents of the push-down
store except for the topmost symbol. Surface configurations stand in close relation to
profiles of computations. A profile is a graph which plots push-down height versus
running-time. (The name profile was introduced by Vinay (1991).) In profiles for
each time step we may enter surface configurations, thus describing a computation
fully by its surface configurations and the “push-down behavior”.

The classes of languages recognized by deterministic (nondeterministic),
logarithmically space bounded AuxPDAs in time 90(og" 1) are denoted by DAPDA*
(NAPDA").

We complete this section with two general notions for complexity classes. A
prefix ‘F’ is used to denote the class of functions instead of the class of languages
computed by deterministic (or, as we will see later on, unambiguous) machines.
Herein, the output is placed on a special write-only-tape which does not count for
the space bound. For example, FP (resp. FAPDA*) denotes the functional classes
corresponding to P (resp. DAPDAk). For nondeterministic machines (and also for
circuits) we make use of the counting operator #. This results in functions computing

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

10 ROLF NIEDERMEIER AND PETER ROSSMANITH

the number of accepting computations of nondeterministic machines for some fixed
input. For example, #P (resp. #NAPDAk) are the classes of functions which map
input words to the number of accepting computations on an NP- (resp. NAPDAk—)
machine.

3. UNAMBIGUITY

In recent time the concept of unambiguity has won considerable attention in
sequential as well as in parallel complexity theory (e.g. (Buntrock et al., 1993;
Hartmanis and Hemachandra, 1988; Lange, 1993; Rytter, 1987; Valiant, 1976)).
Additionally, unambiguity plays an important role in cryptography (Grollmann
and Selman, 1988), formal languages (where this concept originally comes from)
(Harrison, 1978; Hopcroft and Ullman, 1979), and also shows tight connections to
nondeterministic function classes: A commonly accepted functional analog of NP
is the class SVNP (single valued NP) introduced by Hartmanis and Yesha (1984),
which is defined in terms of machines that output a function value on exactly one
accepting path. In fact, this means that these machines have to be unambiguous. In
general, a machine is called unambiguous if it has at most one accepting computation
path for arbitrary input words. Note that it is undecidable whether a machine is
unambiguous, see, e.g., (Hartmanis and Hemachandra, 1988). Subsequently, we will
refine this notion for the purpose of a more precise handling of parallel complexity
classes. In particular, the fine structure between NC! and AC* will be investigated
by means of various unambiguous circuit and AuxPDA classes.

3.1. Unambiguity of circuits. Unambiguous circuits were introduced by
Lange (1993)! This was done in order to get a characterization of CREW-PRAMs in
terms of circuits, thus ending the “isolation” of this important PRAM class.

In order to define unambiguous circuits, we have to introduce the notion of
vulnerable gates. An OR-gate (resp. AND-gate) is called vulnerable if it does not
receive a 1 (resp. 0) by two or more of its predecessors. Otherwise, the value of the
gate is undefined.

Definition 2. (1) UnambAC* (resp. UnambSAC*) denotes the class of languages
recognized by ACF- (resp. SAC*-) circuits which fulfill the additional
requirement that all unbounded gates are vulnerable and none of them ever
has an undefined value.

(2) UnambSACF is defined similar to UnambSPAC*, but here additionally the
OR-gates of bounded fan-in have to be vulnerable.

TLange (1993) changed the notation of unambiguous circuit complexity classes compared to the
preliminary version (Lange, 1990; Lange and Rossmanith, 1990; Niedermeier and Rossmanith,
1992). For the sake of standardization we adopt the notion of (Lange, 1993).

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 11

In this setting Lange proved UnambACF = CREW* (k > 1). Here we will
concentrate on the two semi-unbounded fan-in classes and investigate their relations
to AuxPDAs and the NC-hierarchy.

The above notion of unambiguity for circuits seems to be rather different from the
conventional concept for automata mentioned in the beginning. But the requirement
for the existence of at most one accepting computation path for automata can
be naturally found again in the field of circuits. Here one has to demand that
there exists at most one accepting subtree for arbitrary input words. An accepting
subtree T'(C) of a circuit C is defined analogously to an accepting subtree of an
automaton (Venkateswaran, 1991):

e T(C) includes the output gate of C,

o for any AND-gate g included in C, all inputs of g in C have to be included in
T(C) as inputs of g,

o for any OR-gate g included in C, ezactly one input of g in C has to be
included in T(C') as input of g,

e any constant gate or input gate included in T'(C') must have value one.

This leads to the following definition of weakly unambiguous, semi-unbounded fan-in
circuits.

Definition 3. The class WeakUnambSACF consists of all languages recognized by
SAC*-circuits that have at most one accepting subtree.

Another possibility to define weakly unambiguous circuits is to demand the same
restrictions as in the strongly unambiguous case, but only for gates within accepting
subtrees, not for the whole circuit. For WeakUnambSAC-circuits this would mean
that all OR-gates included in accepting subtrees must be vulnerable. With the
help of this second way of defining unambiguity for circuits it is possible to define
WeakUnambSACF and WeakUnambACF in an analogous way. One simply demands
that within accepting subtrees all unbounded fan-in gates are vulnerable.

Finally, we define an extension of circuits belonging to the class UnambSACF, i.e.,
so-called ambiguity bounded circuits. Here, corresponding to the notion of strong
unambiguity, we demand that the number of accepting subtrees of each gate is
bounded by some function in the input length.

Definition 4. Ambiguous-SAC¥(a(n)) is the class of all languages recognized by
SAC*-circuits, where all gates have at most a(n) accepting subtrees.

By definition, Ambiguous-SAC*(1) coincides with UnambSACP.

3.2. Unambiguity of AuxPDAs. Independent from the distinction between
weakly and strongly unambiguous circuits, there are also two natural notions of
unambiguity for AuxPDAs which we will again call weak and strong unambiguity.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

12 ROLF NIEDERMEIER AND PETER ROSSMANITH

First, we define complexity classes obtained via (conventional) weakly unambiguous

AuxPDAs.

Definition 5. The class of languages recognized by logarithmically space bounded
and 208" ") time bounded AuxPDAs, which have at most one accepting computation

path, is denoted by UnambAPDAF.
The unambiguous circuits defined by Lange (and, therefore, CREW-PRAMs)

correspond to the notion of strong unambiguity. Therefore, we also take a look at
strong unambiguity for automata. An automaton is called strongly unambiguous if
there is at most one computation path between any two of its configurations. Please
note that this includes configurations that are not even reachable from the initial
configuration and that this restriction must hold for every possible input word. In
terms of AuxPDAs we get the following complexity classes.

Definition 6. The class of languages recognized by logn space and 20(8") time

bounded strongly unambiguous AuxPDAs is denoted by StUnambAPDA*.

Observe that strong unambiguity is a concept fairly near to determinism. The
additional power strong unambiguity provides in comparison to determinism is
fairly small, because in both concepts there is only one path allowed between
two arbitrary configurations. Nevertheless, both notions seem to differ due to
the fact LOGDCFL = DAPDA! (Dymond and Ruzzo, 1986) and the inclusion
LOGUCFL C StUnambAPDA! (Theorem 16). The latter inclusion reveals that
unambiguity in the world of formal languages (where, anyway, this concept
took its origin) corresponds to strong unambiguity. The reason for this is the
possibility to eliminate useless nonterminals which yields an unambiguous grammar
G = (N, T, P,S) for which all leftmost derivations A = o, A € N,a € (N UT)* are
unique.

This property was crucial for Rytter’s inclusion LOGUCFL C CREW' (Rytter,
1987). Further evidence for the strong unambiguity of formal languages is given by
the inclusion of unambiguous linear context-free languages in strongly unambiguous,
logarithmic space (that is UnambLIN C StUL (Buntrock et al., 1991)), which
parallels the inclusions DLIN C L and NLIN C NL (Kasami, 1972; Ibarra et al.,
1988).

Finally, it will prove useful to consider a generalization of strong unambiguity,
where we bound the number of computation paths between the configurations.

Definition 7. (1) An automaton M is a(n) ambiguity bounded if there are at
most a(n) computation paths between any two configurations of M for all
inputs w with |w| = n.

(2) The class of languages recognized by a(n) ambiguity bounded AuxPDAs in
time 200°6° ") and space log n is denoted by Ambiguous-APDA*(a(n)).

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 13

Clearly, by definition we have Ambiguous-APDA*(1) = StUnambAPDAF. Strong
unambiguity of AuxPDAs seems to be more adequate for parallel complexity theory
than weak unambiguity does. If we want to simulate a machine in some sense
efficiently in parallel, it often comes out that it is necessary to have a restriction
on the whole computation graph and not only for the parts belonging to accepting
computations. This will become clearer when we consider simulations of AuxPDAs
by circuits.

4. SIMULATIONS BETWEEN SEMI-UNBOUNDED FAN-IN CIRCUITS AND AUXPDAS

In this section we present a simulation of AuxPDAs by circuits where the number
of accepting computations exactly transfers to the number of accepting subtrees.
This improves the well-known simulation (Venkateswaran, 1991) of AuxPDAs by
semi-unbounded fan-in circuits, which incorporates a number of accepting subtrees
which exceeds the original number of accepting paths tremendously. This precise
simulation makes it possible to prove the equality of the counting versions of SAC*
and NAPDA'. In particular, it puts us in the position to give characterizations of
weakly and strongly unambiguous AuxPDAs in terms of the corresponding circuits.
Furthermore, this simulation technique facilitates the application of a variation of
the inductive counting technique (Immerman, 1988; Szelepcsényi, 1988), which yields
a simulation of ambiguity bounded AuxPDAs by unambiguous ones within the same
time (up to a polynomial) and space (up to a constant factor) bounds.

Subsequently, we precede as follows: At first, we prove three basic lemmata which
serve as a basis for the construction of semi-unbounded fan-in circuits simulating
AuxPDAs under preservation of the number of accepting computation paths.
Afterwards, we give simulations of AuxPDAs by circuits and vice versa, thus proving
several characterization results. Finally, we show LOGUCFL C UnambSAC!, which
improves the inclusion LOGUCFL C CREW' given by Rytter (1987) (due to
Lange (1993) the latter inclusion can also be stated as LOGUCFL C UnambAC?).

4.1. Computation paths of AuxPDAs — three basic lemmata. In the
following we will deal intensively with computation paths. Therefore, it is necessary
to introduce some more notation concerning AuxPDAs (Cook, 1971; Ruzzo, 1980).
In order to deal with computation paths, it will be useful to denote paths by
their first and last (surface-)configuration and their length. A (path) description
is a triple (A, B,1) consisting of two surface configurations A and B and an even
natural number 7. A description is called realizable if there exists a path from
A to B in exactly 7 steps, where A and B have same push-down height and the
level of the push-down does not go below this level during the computation. Note
that because of the requirements of the preliminary section (i.e., AuxPDAs are
required to push or to pop in each step), ¢ can only be an even number. In general,
(A, B, 1) represents several paths of length ¢ between A and B. To construct circuits

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

14 ROLF NIEDERMEIER AND PETER ROSSMANITH

simulating AuxPDAs, it is essential to split computation paths continuously into
shorter and shorter paths until we end up with trivial paths, i.e., two-step transitions.
The relation - shows how such a decomposition of paths is done. Let z = (4, B,1),
y=(C,D,3), and z = (E, B, k) be path descriptions. Then we write y,z - z and
z,y Fxiff
(1) The level of the push-down is equal for A, E, and B,
(2) there exists a computation from A to C in one step, pushing a symbol a onto
the push-down store during this step,
(3) there exists a computation from D to E in one step, popping a from the
push-down store, and
4) j+k=1v-2.
In such a way we can reduce the checking of the realizability of = to the checking
of the realizability of smaller paths y and z. In addition, it is important to remark
that it is sufficient to utilize surface configurations in path descriptions due to the
definition of k. Finally, identical push-down heights of A, E, and B in the case of
realizability also imply that ¢’ and D have same push-down height and, moreover, j
and k are always even.

With the help of the decomposition relation I it is already possible to construct
a simulating circuit. We only need to check whether one of the path descriptions
(So, Fo,1) is realizable, where Sy and Fy denote the uniquely determined start, resp.
final, configuration (with empty push-down store) and ¢ is an even number bounded
by the maximum running time of the simulated AuxPDA. Thus, we translate in a
straightforward manner path descriptions (A, B,1) into gates (A, B, 1), whose inputs
are determined by the relation . (Observe that (A, B,0) is realizable iff A = B.)
This approach fails because the depth of the resulting circuit would not be optimal at
all, since we do not use a ‘balanced’ decomposition of computation paths.

However, we will demonstrate in the next three lemmata that a balanced and
unique decomposition of computation paths is possible, thus guaranteeing an optimal
depth for the simulating circuits as well as the preservation of the number of accepting
computations. The first lemma states that for a fized computation path (A, B,1)
there exists an uniquely determined subpath (C,D,:;) within (A, B,:), which
essentially denotes the point which will serve to split (A, B, 1) in a well-balanced way
in different subpaths.

Lemma 8. Let (A, B,t) denote a realizable path description for a fized
computation path of length 1 > 2 between A and B. Then there exist uniquely
determined subpaths (C,D,i1), (E,F,i2), and (G,D,i3) of (A,B,1) such that
(E,F, 7:2), (G,D,’Ilg,) F (C,D,?:l) and 7:2,’1;3 < Z/2 < 17.

Proof. The proof is based on a “recursive descent” where we make crucial use of the

properties of the decomposition relation . Always observe that we speak of one fized
computation path between A and B.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 15

If : = 2, then according to the definition of I-, there exists a uniquely determined
surface configuration E such that (£, E,0),(B,B,0) F (A, B,2). Thus, especially
(C,D,1;) = (A, B,1) holds.

Now let 2 > 2. According to the definition of F there exist uniquely determined
subpaths (E, ﬁ',jl) and (é’, B, j») such that (E', ﬁ',jl), (é’, B,j2) F (A, B,1). We have
to distinguish between two cases, one of them is trivial. We are done if j; and j; fulfill
J1,92 < 1/2. If j; and j, do not meet this condition, then ezactly one of j; and j,
must be greater than i/2. W.l.o.g. assume that j; > ¢/2. Now decompose (E, F, 1)
according to F and check whether the lengths of the computation paths of the
‘descendants’ of (E', ﬁ',jl) are both less than or equal to :/2. This process continues
until we come to the point where this condition is fulfilled. Obviously, this process
terminates since the length of the considered computation paths is at least decreased
by two (cf. definition of F). In addition, it is also straightforward to see that we
end up with uniquely determined (E, F,12), (G, D,13), and (C, D,1;) satisfying the
required conditions. [J

In Lemma 8 we could see that a fixed computation path can be split in three
paths. The first two paths are the subpaths (E, F,15) and (G, D,13) and the third
one is the path (A, B,) with ‘gap’ (C, D,¢;). This means that the verification of the
realizability of (A, B,1) can be reduced to showing that (E, F, i), (G, D,13), and the
path with gap (C, D,1;) are realizable. Before we get into details about this, let us
first formalize the idea of paths with gap.

A (description for a) path with gap (A,(C,D,j),B,1) consists of four surface
configurations A, B, €, D and two even numbers 7 and 7 with 5 <. A path with
gap (A,(C,D,7),B,1) is called realizable iff A and B (resp. C' and D) have same
push-down heights and there exists a computation path from A to ' and one from D
to B with total number of steps 5 — 2. Again the level of the push-down must not go
below the level of A and B during the computation. In particular, (4, (C, D,1), B,1)
is realizable iff (A, B) = (C, D).

Now we can generalize the decomposition relation - to computation paths with
gap. Unfortunately, we have to distinguish between two cases, since now the gap may
be in one of two subpaths. However, both are handled in full analogy to paths
without gaps. Let z = (4, (C, D,), B,t) and, first, let y = (E,(C, D, 7), F, k) and
z = (G, B,l) or, second, let y = (E, F,k), z = (G,(C,D,j),B,l). Then we write
Y,z F z and z,y - = iff the level of the push-down is equal for A, G, and B, there
exists one step from A to E pushing a symbol a onto the store, and there is one step
from F to GG popping a from the store and, finally, K + [= ¢ — 2. In general, a gap
(C,D,j) is interpreted as if the two surface configurations C and D simply were the
same, i.e., as if the path from C to D would exist (without checking that). So
(A, (C,D,j),B,1) is interpreted as a path of length j — i where C' and D are regarded
to be ‘one’ surface configuration. Lemma 9 is the analogue to Lemma 8, just stated

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

16 ROLF NIEDERMEIER AND PETER ROSSMANITH

for a fixed computation path with gap.

Lemma 9. Let (A, (C,D,j),B,1), 1 —j > 2 denote a realizable path with gap. Then
there exist uniquely determined pathsy = (E,(C, D, 7), F,11) and either
(1) 1 = (G,(C,D,3),H,12) and 2z, = (I, F,i3), such that z,z2 F y and
2—7<(1—7J)/2<%—7or
(2) z1 = (G, H,13) and 2z, = ([,(C,D,5),F,i3), such that z,z2 F y and
i3—J<(i—J)/2<u—7.
Proof. The proof is based on the same idea as the proof of Lemma 8. We just make
use of the circumstance that the decomposition relation F uniquely determines both
subpaths of a given path (with gap). The only difference compared to Lemma 8 is
that now always the paths with the gap are chosen, until we find the y such that the
second condition (concerning the length of paths) is true. Furthermore, we use the
fact that the second condition uniquely determines the subpaths (with gap) vy, 21,
and z2. O

Lemma 9 will be used to decompose computation paths with gaps in a balanced
way. In order to investigate the realizability of (A, (C, D, 5), B, 1) we confine ourselves
to examine the realizability of (A, (E, F,1), B,1), 21, and z2. Here, both possible
subpaths with gap have length less than or equal to half of the length of the whole
path with gap (4,(C,D,7),B,t). The arising subpath without gap may have a
maximum length of ¢ — 5 — 2 and will be split with the help of Lemma 8 in a
well-balanced way.

Up to now we only considered one fized computation path (with gap). But in
general there are several computation paths guaranteeing the realizability of (A, B,).
In other words, this means that (A, B,) usually represents several paths. Our aim
in the next lemma is to show that the decompositions of Lemma 8 and Lemma 9
preserve the number of paths, that is, for example, the number of paths of length ¢
between A and B can be computed from the number of paths of the decomposition
components (A, (C, D, 7), B,1), (E, F,11), and (G, D,13) of (A, B,1) (cf. Lemma 8).
Let #(A, B,1) (resp. #(A,(C,D,j),B,1)) denote the number of paths between A
and B of length 7 (resp. the number of paths between A and B with gap (C, D, 7) of
length 7 — 7). We get the following statement for the decompositions of Lemma 8
(resp. Lemma 9).

Lemma 10.
(1)
#(A,B,Z) = Z#(A,(C,D,]),B,Z)) #(Evszl)) #(G7D7i2)7
where the sum s taken over all combinations of surface configurations C', D, E,
F, G and even numbers j, 11, and 15 such that (E, F,41),(G, D,13) F (C, D, 7)
(mdil,ig < Z/2 < j

(2)

Proof.

(1)

(2)

O

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 17

#(A,(C,D,5)B,1) =
Z#(Av(Cthvjl)vai) : #(Ev(Cvaj)vFvil) : #(G7 D17i2) +
Z#(Av (Cllevjl)vai) ' #(Evszl) ' #(G7 (Cvaj)leviZ)v

where both sums are taken over all combinations of surface configurations
Ci, Dy, E, F, G and even numbers 11, 13, and 71 such that
(Ev(Cvaj)vFvil)v(Gv DlviZ) - (Cla(Cvaj)levjl) a'ndil _.7 S (7'_.7)/2 <
J1— 7 for the first of the two sums and (E,F,11),(G,(C,D,j7),D1,12)
(C1,(C,D,3),D1,51) andia — 3 < (2 — 7)/2 < g1 — 7 for the second one.

As already mentioned before, Lemma 8 provides a unique decomposition of
a fixed computation path of length ¢ between A and B in three uniquely
determined sub-paths, where one of them has gap (C,D,7) and the other
two (E,F,11) and (G, D,1z) ‘fill the gap’. Therefore, if we consider the
number of all computation paths represented by (A, B,t), we have to look
at the number of all paths represented by the three path descriptions
(A,(C,D,j),B,1), (E, F,11), and (G, D, ;) obtained from Lemma 8. Observe
that different paths represented by (A, B, 1) nevertheless may result in same
decomposition components, since they can differ inside the subpaths. So a
product #(A,(C,D,3),B,1)- #(E, F,11) - #(G, D,1,) stands for the number
of paths of length ¢ between A and B, which (in Lemma 8) all yield the same
surface configurations C, D, E, F, G and numbers 1, 12, and 5. Finally,
the sum has to be taken over all possibilities of how a path represented by
(A, B,1) may be decomposed in different components.

A similar argument together with Lemma 9 yields the corresponding claim for
path representations with gap.

4.2. Exact simulations of AuxPDAs by circuits. In the preceding subsection
computation paths were decomposed in a unique and well-balanced way. In this
section the main idea is to translate path descriptions into gates that compute the
realizability of the respective path descriptions. It will turn out that this method
results in semi-unbounded fan-in circuits having a number of accepting subtrees

which

is the same as the number of accepting computations of the simulated

AuxPDAs.

One fundamental result of this work concerns the counting versions of NAPDA'!
and SAC'. Remember that #APDA' (resp. #SAC') are the classes of functions
which map an input word to the number of accepting computations (resp. accepting
subtrees) of an (nondeterministic) AuxPDA (resp. semi-unbounded fan-in circuit).

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

18 ROLF NIEDERMEIER AND PETER ROSSMANITH

<A7 Bvi7i17i27j>

<A,(C,D,j),B,i> <(E7F77:1)7(G7D77:2)l_(Cvaj)>

(E,F,11) (G,D,1,)

FIGURE 1. Sub-circuit computing the realizability of (4, B,1).

The following lemma provides the first step in the proof of the announced equality of
these counting classes. The reverse direction will be given in the next subsection.

Lemma 11. #APDA' C #SACh.

Proof. Based on Lemma 10 we construct an SAC!-circuit C' simulating an
AuxPDA M with polynomial running time and logarithmic working space. Due
to the logarithmic space bound there only exist polynomially many surface
configurations of M.

The circuit mainly consists of gates denoted by (A, B,:) and (A, (C, D,), B,1)
that compute the realizability of the corresponding path descriptions. Remember
that M accepts, iff there exists an i (bounded by the running time of M) such
that (So, Fo,?) is realizable, where Sy and Fy denote the uniquely determined initial
and end configuration. Consequently, the output gate of C' will be an unbounded
OR-gate with inputs (So, Fo,1), where ¢ runs through all even numbers bounded by
the running time of M.

It remains to be shown how gates named (A, B,:) or (A4,(C,D,j),B,1) are
constructed. At this point, Lemma 10 comes into play. One simply has to translate
the sum symbols in Lemma 10 into (unbounded) OR-gates and the multiplication
symbols into (bounded) AND-gates. For example,

#(A,B,’I,): Z #(A,(C,D,]),B,Z)#(E,F,Zl)#(G,D,Zz)
i1 2 <3/2<5
results in the (sub)circuit of Figure 1. Gates (A, B,:) and (A, B,1,11,12,]) are
connected iff 71,125 < % <j.
The rightmost input of the AND-gate in Figure 1 computes whether the first
condition of the first case in Lemma 10 holds. Obviously this can be checked by a

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 19

circuit of constant size because it only depends on the transition relation of M and
constant many bits of the input word. The second condition in Lemma 10, i.e.,
11,72 < 1/2 < 7 serves to restrict the inputs of the OR-gate to all those numbers
which are suitable candidates for a well-balanced decomposition of (A, B,7). The
translation of the equations for (A, (C, D, 7), B,1) of Lemma 10 occurs in full analogy
to the above. Clearly, gates like (A, B,0) (resp. (4, (C, D,1), B,1)) have constant
value 1, iff A = B (resp. (4, B) = (C, D)) holds and value 0, otherwise.

Since the number of accepting subtrees of an OR-gate is the sum over the number
of accepting subtrees of its inputs and the number of the accepting subtrees of an
AND-gate is the product over the number of accepting subtrees of its inputs, due to
Lemma 10 we immediately have the following: Each gate (A, B, 1) of the constructed
circuit has as many accepting subtrees as paths of length ¢ between A and B exist. In
particular, the above described output gate exactly has as many accepting subtrees
as M has accepting computations.

The polynomial size of C' directly follows from the polynomial number of surface
configurations and the polynomial running time of M. The logarithmic depth is due
to the well-balanced decomposition of computation paths provided by Lemma 10
(resp. Lemma 8 and 9) and logspace uniformity is a straightforward consequence of
the simplicity of the construction. [

Next, a simulation of weakly and strongly unambiguous AuxPDAs by their circuit
counterparts is given. Both these inclusions are consequences of Lemma 11 and mean
the first step towards proving the equality of these classes.

Lemma 12. (1) UnambAPDA' C WeakUnambSAC!,
(2) StUnambAPDA' C UnambSAC'.

Proof.

(1) In Definition 3 of WeakUnambSAC'-circuits it was explained that they are
SAC!-circuits with at most one accepting subtree. A (weakly) unambiguous
AuxPDA has at most one accepting computation and so the claim follows
from Lemma 11.

(2) Again we use the construction of Lemma 11. We just have additionally to
show that all OR-gates of the simulating circuit are vulnerable, i.e., that
all OR-gates of the circuit have at most one accepting subtree. The strong
unambiguity of the simulated AuxPDA M means that there is at most one
path between two arbitrary configurations of M. This also implies that there
is at most one path with (fixed) gap between two configurations. Thus the
realizability of all gates (A, B,1) and (A, (C, D, 7), B,t) can be verified in at
most one way, that is, the corresponding gates have at most one accepting
subtree. The claim follows because these are the only OR-gates appearing in
the construction (except for the output gate).

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

20 ROLF NIEDERMEIER AND PETER ROSSMANITH

O

The second part of Lemma 12 can be generalized to ambiguity bounded AuxPDAs
(Definition 7). Here one demands that the number of paths between arbitrary
configurations is bounded by a value a(n). Analogously, ambiguity bounded,
semi-unbounded fan-in circuits were defined by restricting the number of accepting
subtrees for all gates of the circuit (Definition 4). The following proposition is a
generalization of part two of Lemma 12.

Proposition 13. Ambiguous-APDA'(a(n)) C Ambiguous-SAC*(a(n)?).

Proof. The proof is similar to the proof of Lemma 12. The gates (A, (C, D, j), B,1)
checking the realizability of paths of length 5 — 12 between A and B with a gap
between C and D can have at most a(n)? accepting subtrees. This is due to the fact
that those gates actually check the existence of two paths in each case, that is the
existence of a path from A to C' and one from D to B.

According to the ambiguity bound of the simulated AuxPDA there may be at
most a(n) paths between A and C' and between D and B each time, yielding a
maximum of a(n)? paths represented by (A4, (C, D,), B,1). Clearly, the number of
paths represented by path descriptions (A, B, 1) is bounded by a(n). Together with
arguments used in the second part of the proof of Lemma 12 this results in an upper
bound of a(n)? for the ambiguity of all gates of the simulating circuit. [J

Evidently, the claim of Proposition 13 still remains true if one takes the counting
versions like in Lemma 11. That is, we also have #Ambiguous-APDA'(a(n)) C
Ambiguous-SAC! (a(n)?).

4.3. Exact simulations of circuits by AuxPDAs. In contrast to the simulation
of AuxPDAs by circuits, the simulation of circuits by AuxPDAs can be obtained
by slight modifications of techniques developed by Venkateswaran (1991). These
simulations will enable us to prove characterizations of unambiguous and counting
versions of AuxPDAs by semi-unbounded fan-in circuits. Note that in the subsequent
lemma (in contrast to Lemma 11 and 12) we have simulation results for arbitrary
natural powers & > 1.

Lemma 14. (1) #SACF C #APDAF,
(2) WeakUnambSAC* C UnambAPDA*,
(3) UnambSACF C StUnambAPDA",

Proof. The first two cases can be proved directly by the simulation method of
Venkateswaran (1991). In order to prove the more intricate third case it is necessary
to make an addition to this technique. In this case the push-down store is utilized to
guarantee the strong unambiguity of the simulating AuxPDA.

In the sequel, we give a concise presentation of Venkateswaran’s method.
Furthermore, in curly brackets we state the additions required for the proof of the

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 21

third part. Let C be the given, logspace uniform, semi-unbounded fan-in circuit and
let M be the simulating AuxPDA. The simulation starts at the output gate of C.
For an arbitrary gate g of C, M does the following:

If g is an OR-gate, { M pushes g marked as ‘done’ on the push-down, }
M guesses one predecessor h of g and checks recursively whether h has value 1.
If g is an AND-gate, M computes its (constant many) predecessors in a fixed
(e.g. lexicographical) order, pushes all of them except the last one on the
push-down and recursively verifies that the last gate has value 1.

If g is an input gate of C, then M rejects, if g has value 0. If g has value 1,
M accepts, if the push-down is empty and, otherwise, M pops the topmost
push-down element and works on it.

{ If ¢g is a gate marked ‘done’, then M pops the topmost gate from the
push-down and recursively works on it (i.e., g is ignored). }

The correctness of the above described simulation is proved as follows:

(1),(2)

For the first two cases it suffices to show that #SACF C #APDA* holds,
since WeakUnambSAC* C UnambAPDAF is the special case where we only
have one accepting computation. The inclusion #SACF C #APDAF is easily
derived from the fact that the above described simulation just guesses the
accepting subtrees of the simulated circuit. Thus the simulating AuxPDA has
exactly as many accepting computations as accepting subtrees of the circuit
exist. The time and space bounds are straightforward from the logspace
uniformity, the polynomial size and the polylogarithmic depth of the circuit
(see (Venkateswaran, 1991)).

To prove UnambSAC® C StUnambAPDA* we need the additions in curly
brackets. With them it is possible to show the existence of at most one
computation path between two arbitrary configurations of the simulating
AuxPDA M. Observe that it is crucial here that the total contents of the
push-down store is part of a configuration of M. Due to the additional
‘done’-gates we have a partial protocol of the guessed subtree on the store.
The strong unambiguity of M is proved by contradiction.

Suppose that M is not strongly unambiguous. Then there must exist a
configuration K of M with two immediate successors K; and K, (K; # K>)
such that K; and K, themselves have a common successor K.. It is important
that due to the definition of M, configurations K; and K; must differ with
respect to their push-down contents. This results from the fact that the only
place in the described simulation where nondeterminism comes into play is
the point where M guesses one input of an OR-gate. But this guessed input is
pushed on the store and consequently K; and K3 must differ in such a guessed
gate. So we can assume that K; and K, differ in their topmost push-down
symbols, that is, in two different input gates of an OR-gate. Let us call these

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

22 ROLF NIEDERMEIER AND PETER ROSSMANITH

two gates g1 and ¢;. If K; and K, now have a common successor K., this in
particular means that ¢; and g, have to be popped from the push-down before
M reaches K.. Pursuant to the definition of M, gates marked ‘done’ are
popped from the push-down only if they are the roots of accepting subtrees
(i.e., g1 and g2 evaluate to 1). But this is a contradiction to the precondition
that all gates of the simulated circuit have at most one accepting subtree.

O

Most of the results up to now can be summarized in the following theorem.
Recently, Vinay (1991) independently proved the first case by quite different
methods.

Theorem 15. (1) #SAC' = #APDA",
(2) WeakUnambSAC! = UnambAPDA',
(3) UnambSAC! = StUnambAPDA".

Proof. Simply combine Lemma 11 (resp. Lemma 12) and Lemma 14. [

4.4. The recognition of unambiguous CFLs. Finally, we prove the inclusion
of the closure of unambiguous context-free languages under log-space many-one
reductions in UnambSAC'. This result has some important consequences. First,
it extends Rytter’s inclusion LOGUCFL C CREW"' (Rytter, 1987). Note that
Lange (1993) characterized CREW' by UnambAC', a presumably stronger circuit
class than UnambSAC!. In Rytter’s algorithm “non-monotone” write accesses were
a crucial part of the algorithm. Theorem 15 immediately implies a monotone
CREW algorithm, since UnambSAC!-circuits can be simulated by CREW-PRAMs
in a monotone way. Second, Theorem 15 also helps to shed some more light on
the question whether LOGUCFL = UnambAPDA!. As can be seen in Section 5,
UnambSAC! and its complement are included in UnambAPDA'. The above equality
would imply the closure under complementation of LOGUCFL. Since the latter seems
to be unlikely, we conjecture the strict inclusion of LOGUCFL in UnambAPDA!.

Theorem 16. LOGUCFL C UnambSAC".
Proof. Due to Theorem 15 it is sufficient to prove LOGUCFL C StUnambAPDA!.

Moreover, because StUnambAPDA?! clearly is closed under (deterministic) logspace
many-one reductions, it suffices to show UCFL C StUnambAPDA®.

Let G = (N,T,P,S) be an unambiguous context-free grammar in Chomsky
normal form, that is, there are only productions of the form A — BC or A — a,
where A, B,C € N (set of nonterminals) and a € T (set of terminals). W.l.o.g.
assume every nonterminal to be both reachable and productive. Let w € T™* be an
arbitrary, but fixed input of length n, i.e., w = a1as...a, for a; € T, 1 <1 < n. For
0<:<j<nweset,w; :=a;41...a;. Thus we have ;w; = € and qw, = w.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 23

The AuxPDA M accepting L(G) works as follows. M starts with the triple
(1,n,S) on the working tape. For an arbitrary triple (¢,7, A) with¢ < j Ae N, M
guesses a production A — o, @ € N2 U T and then proceeds as follows:

o If « = BC, then M pushes (A — B(C') on the store and guesses a number k
with ¢« < k < 7, pushes (k,j,C) on the store and recursively works on the
triple (1, k, B).

o If o = a, then M rejects if ;,w; # a (especially j = 7 + 1 must hold), accepts if
the push-down is empty and recursively checks the next topmost push-down
contents, otherwise.

e If M pops a push-down contents of shape (D — EF), then M simply checks
the rest of the push-down store (i.e., “ignores” (D — EF)).

The push-down contents representing productions with right-hand side consisting of
nonterminals ((D — EF')) serves for guaranteeing the strong unambiguity of M. As
in Lemma 14 it is easily seen that there is only one place where nondeterminism
occurs. Here it is the point where we guess a production with a given nonterminal on
the left side.

Suppose that there is a configuration K of M with two immediate, different
successors K; and K, such that K; and K, have a common successor K.. This leads
to a contradiction to the unambiguity of the given grammar G. With arguments
analogous to Lemma 14 it is easy to see that K; and K, must differ in the
topmost push-down symbol. There are two cases to distinguish. Either the topmost
push-down contents represents (two different) guessed productions A — B;C; (resp.
A — By(C5) or we have for some production A — BC two different guesses k;
and ko for the value of k, thus yielding (i, k1, B) and (ki,7,C) or (i,kqs, B) and
(ka2,7,C). Since the handling of the second case is similar to the first one, we only
describe the first one. In the first case, clearly, both productions must be popped
from the push-down before M reaches K.. According to the definition of M,
these productions are only popped if A = ;w;. Because each nonterminal of G is
productive and reachable, there must exist v1,vy € T such that vi,wjvy is derived
as S = viAvy = v, BCivy = v1;w;ve on the one hand and, on the other hand,

derived as S = vy Avy = v1 ByCavy = v1;w;v2. This means that we have two different
derivation trees for v1;w,v2, thus contradicting the unambiguity of G. O

5. INDUCTIVE COUNTING ON SEMI-UNBOUNDED FAN-IN CIRCUITS

The inductive counting technique of Immerman (1988) and Szelepcsényi (1988) led
to one of the most outstanding results in structural complexity theory of the last
years: Nondeterministic space is closed under complementation. Soon this method
was employed to prove several important results (e.g. (Borodin et al., 1989; Buntrock
et al., 1993)). Here we will open a further field of application for this technique
by translating the methods of Buntrock et al. (1993) into leveled, semi-unbounded

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

24 ROLF NIEDERMEIER AND PETER ROSSMANITH

circuits: inductive counting on leveled, semi-unbounded fan-in circuits. Observe that
for most of the circuit classes it is no restriction to demand them to be leveled (see
Sections 2 and 3). This new variation of inductive counting can always be applied
when we have characterizations of AuxPDAs by circuits. We obtain several results:
As a first example, we give a new proof for the closure under complementation of
SACF (Borodin et al., 1989). Second, this method enables us to improve the main
result of Buntrock et al. (1993). Polynomially ambiguity bounded AuxPDAs can be
simulated by unambiguous ones without time or space penalty. Third, inductive
counting applies for proving the inclusion UnambS$AC* C UnambAPDA* an open
question considered to be at least difficult by Lange (1993). Finally, careful analysis
of a proof of Borodin et al. (1989) reveals the closure under complementation of the
unambiguous circuit class UnambSAC*.

5.1. The basic inductive counting lemma and a first application. Before
presenting the inductive counting method for leveled circuits, we have to point out
what we will count in circuits. Therefore, the notion of unit of measurement (measure
for short) for gates is introduced. A measure value m (m-value for short) of a gate g
in circuit C with fixed input w € {0,1}" is a natural number which only depends on
the type of g and the measure values of the inputs of g. Herein, input gates of C' will
always have value 0 or 1 (corresponding to their Boolean value). In addition, the
(measure) value of g must be computable in an easy way (preferably with logarithmic
space) by an associative and commutative operation (essentially, we only use addition
or multiplication). For example, the simple Boolean value of gates on given inputs
can be interpreted as a measure. The central lemma of this subsection, which
presents the technique of inductive counting on leveled circuits, can now be stated.

Lemma 17. Let C be a logspace uniform, leveled circuit of size z(n) > n with fized
input word w € {0,1}". Furthermore, let m be a measure such that for all gates of C
the m-value is bounded by a(n) and suppose that there exists an AuzPDA algorithm
verifying for an arbitrary gate g of C' in time t(n) and space s(n) that g has an
m-value at least as big as a given number.

Then the m-value of the output gate of C can be ascertained by a
nondeterministic AuzPDA with time z(n)o(l) + (log a(n) —|—t(n))z(n)2 and space
max(log a(n) + log z(n), s(n)).

Proof. The key idea of the proof is as follows: Starting with the level of the input
gates, the simulating nondeterministic AuxPDA M finds out level by level for all
gates of a considered depth their value according to the measure m. In this way, the
m-value of the output gate of C will finally be ascertained.

The details are as follows. Let S; denote the sum over the m-values of all gates
at level 1 (i.e., depth). Obviously, Sp is known (resp. easy to compute) because in
level 0 we only have the input gates of C' (with fixed Boolean values). Now let
¢ > 0 and suppose that S;_; is known. In order to ascertain S;, M has to find out

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 25

all m-values of gates at level ¢. To determine the m-value of one gate at level ¢, M
procedes in the following way: For each gate g;_; in depth ¢ — 1, M guesses its
m-value v, verifies with the (according to the precondition) given algorithm that g;_;
has an m-value at least as big as v, and increases a counter variable Z (which is
initialized with zero) by v. If g;,_1 is an input to g; (recall that, all inputs of g; lie at
level 1 — 1), the m-value of g;_; serves in a straightforward manner to compute the
m-value of g;. Here we make use of the fact that due to the required associativity and
commutativity of the operation for computing m-values, M can always do a partial
computation for the m-value of g; in one variable. When M has gone through all
gates in level ¢« — 1, it compares the counter variable Z with the already known
sum S;_1. If Z is less than S;_1, then there must exist a gate at level 2 — 1 for which
M has guessed a too small m-value and consequently M rejects. If Z is equal to S;_;
(Z greater than S;_; is impossible), M must have guessed the m-values for all gates
in level : — 1 in the right way and, therefore, the m-value of ¢g; has been computed
correctly. Repeating this procedure for all gates at level ¢, M finds out the value of
the sum S;. In particular, M finally gets the m-value of the output gate of C'.

Because of the assumptions made and especially the logspace uniformity of C'
(which inter alia is extensively used above to find out all gates at a certain level),
the claimed time and space bounds for M can be verified easily. We need time
2(n)°W + (log a(n) + t(n))z(n)? due to the requirements of the uniformity machine,
the necessity of summing up ambiguity values, and the verification of guessed
ambiguity values, respectively. The space bound max(loga(n) + logz(n),s(n))
derives from analogous considerations and the proof is completed. [

A first simple application of Lemma 17 provides a new proof for the closure
under complementation of SAC* (Borodin et al., 1989), which in particular implies
the closure under complementation of LOGCFL (Sudborough, 1978; Venkateswaran,
1991).

Corollary 18. (Borodin et al., 1989) SAC* = Co-SAC*.

Proof. W.l.o.g. let the given SAC*-circuit C' be leveled. We just use the trivial
measure described in the beginning, that is the Boolean values of the gates. The
verification algorithm needed for Lemma 17 is obtained from Venkateswaran’s
equality SACF = NAPDAF (Venkateswaran, 1991). An application of Lemma 17 then
yields the desired result, if we define the simulating AuxPDA to accept iff the output
gate of C has value 0. Note that in this way we have proved Co-SAC* C NAPDAF
and NAPDA* = SAC* provides the claim. [J

5.2. Simulating ambiguity bounded AuxPDAs by unambiguous ones. In
the proof of Lemma 17 it can be observed that the simulating AuxPDA does not
reject, only if the exact measure values (m-values) of all gates of the given circuit
are guessed correctly. Since there is only one possibility to make only correct

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

26 ROLF NIEDERMEIER AND PETER ROSSMANITH

guesses, this implies that, if one has an algorithm for AuxPDAs verifying correctly
guessed m-values in an unambiguous way, the total simulation of Lemma 17 will be
unambiguous. In order to get an unambiguous, verifying AuxPDA, it is necessary
to find a gate measure which allows a verification of correctly guessed m-values in
exactly one way. Subsequently, for two purposes we will present adequate measures
which enable unambiguous verifications. In this way, eventually unambiguous
simulations of ambiguity bounded circuits (and, thus due to Proposition 13, of
ambiguity bounded AuxPDAs) and UnambSAC*-circuits are obtained.

Let us begin by restating the notion of ambiguity bounded gates. In Section 3 we
said that a gate is a(n) ambiguity bounded if it has at most a(n) accepting subtrees.
Furthermore, in Section 4 we already mentioned that the ambiguity value of an
AND-gate can be computed by multiplying the ambiguity values of its inputs and
the ambiguity value of an OR-gate is the sum over the ambiguity values of its inputs.
Clearly, the ambiguity value of an input gate simply corresponds to its Boolean
value. Having these facts in mind, we are able to prove one of the main results of this
paper: Polynomial ambiguity bounded AuxPDAs can be simulated by unambiguous
ones without time and space penalty.

Theorem 19. (1) Ambiguous-SAC!(n°1)) C UnambAPDA',
(2) Ambiguous-APDA!(n°)) C UnambAPDA'.

Proof.

(1) According to the above explanations it suffices to show that for each gate g of
the given circuit C' a correctly guessed ambiguity value for g can be verified
unambiguously. If this can be done by an AuxPDA in polynomial time and
logarithmic space, the claim follows with the help of Lemma 17, since w.l.o.g.
(' can be assumed as leveled. The AuxPDA M verifies a guessed ambiguity
value a for a gate g in the following manner:

o If g is an OR-gate, M ascertains in some fixed (e.g. lexicographical)
order all input gates of g and guesses for all of them a corresponding
ambiguity value such that the sum of these equals a. Then M recursively
verifies the ambiguity values of the input gates different from zero.

o If g is an AND-gate, M ascertains in some fixed order the (constant
many) input gates of g and guesses for all of them a corresponding
ambiguity value such that the product of these equals a. Then M
recursively verifies the nonzero ambiguity values of the input gates.

o If g is an input gate, M rejects,if g=0anda > 1,orifg=1and a > 1.
If the push-down store is empty and ¢ = 1 and a = 1, then M accepts.
Otherwise M recursively works on the topmost push-down contents.

The logarithmic space bound is straightforward and with little effort a
polynomial running time can be proved for M. Furthermore, the unambiguity
of M for correctly guessed ambiguity values a is a direct consequence of the

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 27

fact that in this case M always has exactly one possibility to guess correctly
the ambiguity values of the input gates each time. Note that if a is guessed too
small, M has more than one possibility to do the verification and, because of
that, no longer works unambiguously. But recall that in this case the AuxPDA
of Lemma 17 will finally reject, since then Z = §5;_; does not hold. Using
the above described unambiguous AuxPDA M for the verification algorithm,
application of Lemma 17 now provides the desired result: The AuxPDA
simulating the ambiguity bounded circuit C' ascertains the ambiguity value of
the output gate of C' and accepts, iff it is greater than 0.

(2) Proposition 13 yields Ambiguous-APDA'(n°()) C Ambiguous-SAC! (n®M)
and thus the second part of Theorem 19 follows by application of part one.

O

Note that the inclusion
NSPACE-AMBIGUITY (log n,n°®)) C UnambAPDA! (%)

was in particular proved in (Buntrock et al., 1993), restricting the unambiguity only
between reachable configurations. Theorem 19 is one possible improvement over (*).
Buntrock, Jenner, Lange, and Rossmanith (1991) improved the upper bound of (*):
NSPACE-AMBIGUITY (log n,n°)) C DAPDA".

The simulating AuxPDA of Theorem 19 computes the number of accepting
subtrees of the output gate of the simulated circuit. This means that it can compute
the function mapping input words to the number of accepting subtrees (resp.
accepting computations (Proposition 13)). So we even have the following result:

Corollary 20. (1) #Ambiguous-SAC'(n%®)) C FUnambAPDA',
(2) #Ambiguous-APDA'(n°M) C FUnambAPDA".

One application of Theorem 19 is that CFLs generated by grammars which
possess at most a polynomial number of derivation trees for arbitrary words can be
recognized by unambiguous AuxPDAs.

Corollary 21. The word problem of polynomially ambiguous CFLs s contained in
UnambAPDA®.

Proof. In Theorem 16 the inclusion UCFL C UnambSAC! (respectively UCFL C
StUnambAPDA' (and therefore, LOGUCFL C StUnambAPDA')) was proven. It
can be observed that this construction also serves for showing the inclusion
of polynomially ambiguous CFLs in Ambiguous-APDA(n®(M). Assuming the
correctness of the latter, the claim follows by application of Proposition 13 and
Theorem 19. Let us shortly indicate the correctness of the stated inclusion. For the
recognition of polynomially ambiguous CFLs we use exactly the same AuxPDA M as
we did for the recognition of unambiguous CFLs in Theorem 16. To show that the
ambiguity of M now remains polynomially bounded is again done by contradiction:

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

28 ROLF NIEDERMEIER AND PETER ROSSMANITH

Suppose that there are more than p(n) paths between two configurations K; and K>
of M, where p is a polynomial that bounds the number of derivation trees. In a
way similar to Theorem 16 it follows that for all paths from K; to K, there must
be one terminal string v, which is recognized during the transitions from K; to K.
Making again use of the assumption that all nonterminals of the underlying grammar
are both productive and reachable, it can be concluded in a way analogous to
Theorem 16 that there must exist more than p(n) derivation trees for some terminal
string generated by the grammar. This contradicts the assumption and the claim
follows. [

From Theorem 16 and (Lange, 1993) we have that unambiguous CFLs can be
recognized by CREW-PRAMs with a polynomial number of processors in logarithmic
time. This result was already given by Rytter (1987), showing that more precisely n’
processors suffice. Meanwhile, Rossmanith and Rytter (1992) reduced the number of
processors to n® and proved that even finitely ambiguous CFLs can be recognized by
this PRAM-class.

If one improved Corollary 21 by showing that polynomial ambiguous CFLs
are included in StUnambAPDA', then together with Theorem 15 it would follow
that even polynomially ambiguous CFLs can be recognized by CREW-PRAMs in
logarithmic time with a polynomial number of processors. At least Corollary 21
implies that polynomially ambiguous CFLs can be recognized by robust PRAMs
(Hagerup and Radzig, 1990) within the same complexity bounds. This is
a straightforward consequence of the characterization of UnambAPDA! by
WeakUnambSAC'-circuits given in Theorem 15. One just has to simulate these
weakly unambiguous circuits by the robust PRAM in the usual way (see, for example,

(Lange, 1993)).

5.3. Further applications and results. A second application of Lemma 17
allows us to show UnambSACF C UnambAPDAF for &£ > 1. In this way we get
the first nontrivial upper bound for UnambSAC-circuits demanded in (Lange,
1993). Lemma 17 itself will serve to prove Unamb$AC' C UnambAPDA'. Because
UnambSAC!-circuits can have a super-polynomial ambiguity, it is necessary to
introduce a new measure for gates in order to obey a logarithmic space bound (cf.
Lemma 17). For this we make use of the so-called saturation of gates.

A gate is considered as saturated, if it is an input gate with value 1 or if it is an
OR-gate with at least two inputs with value 1. The following definition generalizes
this concept by making the saturation of a gate dependent on the saturation of its
inputs. Let C' be an UnambSA C-circuit and g be any gate in C'. Then the saturation
of g is defined as follows.

o If g is an input gate of C, then it has saturation 1, if g = 1 and saturation 0,
otherwise.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 29

e If g = AND(g1, g2), then its saturation is the sum of the saturations of ¢; and
g2, if both these saturations are greater than 0 and the saturation of ¢ is 0,
otherwise.

e If g is an OR-gate (of arbitrary fan-in), then we have to consider two cases. If
g evaluates to 0, then its saturation is defined to be 0. If ¢ has exactly one
input with saturation greater than 0 (i.e., g has at most one input which
evaluates to 1), then the saturation of g is defined as the saturation of the gate
at this input. Otherwise, if g has two 1-inputs, then ¢ is a bounded OR-gate
and the saturation of g is the sum over the saturations of all the inputs of g
plus 1 (because g itself is a saturated OR-gate).

Note that the output gate of circuit C' on input = has saturation greater than 0, iff
C accepts z. Obviously, the saturation is polynomially bounded for all the gates of
UnambSAC'-circuits. The essential request behind this definition again is to be able
to supply an AuxPDA verifying correctly guessed saturation values unambiguously.

Lemma 22. UnambSAC! C UnambAPDA?.

Proof. W.l.o.g. we assume the given UnambFAC -circuit C to be leveled. It suffices
for applying Lemma 17 to show that a correctly guessed saturation value of a gate
can be verified in polynomial time and within logarithmic space by an unambiguous
AuxPDA, because the saturation measure is polynomially bounded for all gates of
UnambSAC!-circuits. The verification algorithm exactly follows the definition of
saturation and the proof is done analogously to Theorem 19, where the verification
algorithm followed the definition of ambiguity for gates. Clearly, the (unambiguous)
AuxPDA resulting from Lemma 17 accepts iff the output gate of C' has saturation
greater than 0. O

Lemma 22 serves as the fundamental ingredient for the proof of the generalized
result:

Theorem 23. UnambSAC* C UnambAPDA* fork > 1.

Proof. A leveled circuit of depth O(logn) can be regarded as a circuit of
O(log"™ n) circuit layers, each of depth logn (i.e., each of these circuit layers is
an UnambPAC!-circuit). The separation into different layers can be done easily
because of the w.l.o.g. assumed leveled-ness and logspace uniformity of the simulated
circuit. The essential trick is that we now do a simulation for each of these layers
similar to that of Lemma 22. Here the problem arises that, when simulating
such an UnambSFAC -circuit layer by an AuxPDA M, in general we do not have
automatically the values of the input gates at disposal. Therefore, M recursively
computes those values each time they are needed. (Note that the simulation starts in
the highest (that is, output-) UnambFAC -layer of the given circuit.)

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

30 ROLF NIEDERMEIER AND PETER ROSSMANITH

Observe that at a transition from one circuit layer to another in some respect we
forget information. That is, to compute the value of an input gate g of some circuit
layer i, a (re)computation which actually provides the saturation of g is performed.
But then M is only interested in whether g has saturation greater than 0 (i.e., g has
value 1) or ¢ has saturation 0 (i.e., g has value 0). It is necessary to “forget” the
actual value at this point because, otherwise, the saturation values were no longer
polynomially bounded.

Nevertheless, the whole simulation obviously remains unambiguous. The
logarithmic space bound and the correctness of the simulation are straightforward
and such what remains to be shown is the time bound 200") (= nOUes B ™). For
each UnambSAC'-circuit layer only polynomially many recursive calls are performed
by M due to the polynomial time bound of the simulation of UnambSAC!-circuits
of Lemma 22. Observe that in polynomial time at most a polynomial number of
questions to the input bits of the circuit take place whose determination leads to the
recursive calls. Thus, the recursion depth of O(logk_1 n) yields a total running time

of nO(logk_1 n)‘]

We separated an UnambFACF-circuit in layers of depth O(logn). This is the only
possibility we had, because, if the layers were chosen “thicker” than O(logn), then
the space needed by the simulating AuxPDA M would become greater than O(logn)
and if the layers were chosen “thinner” than O(logn), then the simulation time
would become greater than 20(o8*n). Agsume that we separate (' in circuit layers of
arbitrary depth D. Let T(D) (resp. S(D)) denote the time (resp. space) that are
needed for the simulation of such a circuit layer with the help of the techniques
of Lemma 22. Then T(D) = max(2°(?) n®M) and S(D) = max(O(D), O(logn)).
(Observe that for D > 0 we have to assume a polynomial size for each of those circuit
layers.) Evidently, D = O(logn) is optimal to gain a simulation in polynomial time
and logarithmic space. For the running time ¢(n) of the whole simulation analogous
to Theorem 23 it holds

t(n) — T(D)logkn/D > nO(logkn/D) — 20(10g’°"’1 n/D)‘

Consequently, if D = o(logn), then t(n) = (.«)(20(10*‘3’c).

In the end of this section, the closure under complementation for strongly
unambiguous, semi-unbounded fan-in circuits is investigated. Whereas there is
little hope to prove the closure under complementation for UnambSACF, the
construction of Borodin et al. (1989) for complementing circuits fully applies to
UnambSPAC*. Since this construction does not work for UnambSACF, we take
a different approach via Lemma 17. By a slight modification of Lemma 17 it
is possible to show that Co-UnambSAC' is included in ReachUnambAPDA' (see
(Buntrock et al., 1991)), the class of languages recognized by polynomial time and
logarithmic space bounded AuxPDAs, where each configuration is reachable from

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 31

the start configuration by at most one computation path. Of course, by definition
it holds StUnambAPDA! C ReachUnambAPDA! C UnambAPDA!. Recall that in
Theorem 15 it was proved that UnambSAC' and StUnambAPDA® coincide, so the
following theorem could also be stated for strongly unambiguous AuxPDAs instead

of UnambSAC!-circuits.
Theorem 24. Co-UnambSAC! C ReachUnambAPDA!.

Proof. Let C be the given UnambSAC!-circuit, which w.l.o.g. is assumed to be
leveled. As mentioned before, a slightly modified version of Lemma 17 is applied.
The gate measure will be the simple Boolean values of the (evaluated) gates. Only
one addition to the algorithm of Lemma 17 is made. After nondeterministically
guessing a gate value, the simulating AuxPDA additionally pushes this guessed
value (0 or 1) on the push-down store. Clearly, guessed values are verified with the
strongly unambiguous AuxPDA from the equality UnambSAC! = StUnambAPDA®
(Theorem 15). Similar to Theorem 16 the idea behind this pushing of additional
information (i.e., guessed values) on the store is to record paths of guesses
in order to guarantee the unique reachability of configurations (from the start
configuration). In these paths of guesses the history of nondeterministic decisions
of the simulating AuxPDA M (except for the strongly unambiguous verifying
algorithm) is protogeniced. These paths of guesses only are popped from the
push-down, when M has found out the value of the output gate g of C'. (M finally
accepts, iff g evaluates to 0.) This is due to the fact that in Lemma 17 the push-down
store 1s only needed for the verification of guessed values. Since the configuration
where M has ascertained the value of g is reachable by exactly one computation
path (with an uniquely determined, corresponding path of guesses), we can easily
conclude that all configurations of M are reachable by at most one computation path
from the start configuration. Thus application of such modified Lemma 17 yields the
statement of Theorem 24. O

Perhaps one could be tempted to assume that the above simulation (‘modified
Lemma 17’) can even be done in a strongly unambiguous manner (and we can
conclude UnambSAC! = Co-UnambSAC'). But simple considerations show that this
is not true because for (unreachable) configurations where normally by inductive
counting ascertained numbers are pretended wrongly there can be several ways
leading to the accepting configuration.

In contrast to UnambSACF, whose closure under complementation seems to be
unlikely, UnambSPAC* is closed under complementation.

Theorem 25. UnambFAC* = Co-UnambPAC” fork > 1.

Proof. It can be observed that the construction of Borodin et al. (1989) for
complementing SACF-circuits directly transfers to UnambSACF-circuits. The
essential point i1s that all unbounded OR-gates in the construction for the

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

32 ROLF NIEDERMEIER AND PETER ROSSMANITH

complementing circuit of Borodin et al. (1989) can be replaced by vulnerable
unbounded OR-gates, i.e., all of them have at most one input evaluating to
one. Moreover, the so-called THRESHOLD-gates additionally needed there can be
replaced by monotone NC'-circuits (Ajtai et al., 1983; Borodin et al., 1989), thus
unbounded OR-gates are not necessary in this case. [

6. NORMAL FORMS FOR AUXPDAS

In this section, we will utilize the characterizations of AuxPDAs by semi-unbounded
fan-in circuits to prove some normal form results. First, we deal with the restriction
of push-down heights in particular for unambiguous AuxPDAs and, second, we
introduce the notion ‘oblivious’ for AuxPDAs and show that in the most interesting
cases 1t is no restriction to demand obliviousness. In addition, oblivious and
unambiguous AuxPDA classes will prove to coincide with WeakUnambSACF and
UnambSAC” for arbitrary k. In this way, we extend the results of Section 4, where
only a characterization for £ = 1 was given.

6.1. AuxPDAs with restricted push-down height. For Turing machines there
i1s great interest in simultaneous resource bounds, i.e., restricting time and space
bounds at the same time. As far as AuxPDAs are concerned, one most of the
time deals with simultaneous bounds on running-time and working space. But what
about the unlimited push-down store? There has also been a lot of research to
restrict the size of the push-down store. Mager (1969) showed that a push-down
store suffices whose size is exponential in the space bound. Harju (1979) showed
(also see (Ruzzo, 1980) for an alternative proof) that deterministic AuxPDAs
with polynomial running-time and logarithmic working-tape can be simulated by
deterministic AuxPDAs with logarithmic space and O(log®n) push-down height.
However, the simulation yields a super-polynomial running-time. But later on,
Dymond and Ruzzo (1986) proved the above result where even the polynomial
running-time can be preserved. The dual result for nondeterministic AuxPDAs (with
also preservation of the polynomial running-time) was shown earlier by Ruzzo (1980).

Subsequently, we will restrict push-down height for nondeterministic, unambiguous,
and strongly unambiguous AuxPDAs. For this purpose, we make use of the
characterization of AuxPDAs by semi-unbounded fan-in circuits. This is done in the
following way. Assume that we have a semi-unbounded fan-in circuit C' of depth d(n)
and size z(n) simulating an AuxPDA M. Then we again simulate C by an AuxPDA
N in the usual way (cf. (Venkateswaran, 1991)): Starting at the output gate, for
AND-gates we examine both children and for OR-gates only one guessed child.
Because we only need to store constant many parameters (with a space requirement
of O(log z(n))) of the recursive calls, a push-down height of O(d(n) - logz(n)) is

immediate. Furthermore, N has the same time and space complexity as M. Our first

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 33

application of the described technique yields an alternative proof for a result due to

Ruzzo (1980).

Theorem 26. (Ruzzo, 1980) A language L is accepted by a NAuzPDA in logn space

and 200°€" ") time iff L is accepted by such a machine which, furthermore, uses at
most O(log"™ n) push-down height.

Proof. Just make use of the technique described above, using Venkateswaran’s

equality SACF = NAPDA*. O

Making use of two of the main results of this paper, we further gain the proposed
restriction of the push-down heights for unambiguous and strongly unambiguous
AuxPDAs. Unfortunately, we have such a result only for polynomial time AuxPDAs.
Note that in the case of unambiguous AuxPDA’s the result of Theorem 27 already
was obtained by Buntrock (1989).

Theorem 27. L is accepted by an unambiguous (resp. strongly unambiguous)
AuzPDA inlogn space and polynomaal time iff L 1s accepted by such a machine which,
furthermore, uses at most O(log® n) push-down height.

Proof. 1t is sufficient to utilize the equality WeakUnambSAC' = UnambAPDA!
(resp. UnambSAC! = StUnambAPDA') given in Theorem 15 in combination with
the above described technique. [

6.2. Obliviousness for AuxPDAs. An automaton is called oblivious if the
movements of all its heads are independent from the input except its length. This
property is easily achieved for space bounded Turing machines: Roughly speaking, we
just always move the heads to and from the two ends of the respective tape contents.

For AuxPDAs obliviousness is not so easy to attain because of the push-down store
head. But here the characterization of AuxPDAs by circuits applies. The main idea
again is to simulate a circuit by an AuxPDA. If the circuit is strictly alternating (i.e.,
for all ¢ > 0, all gates on level 2¢ + 1 are OR-gates and all gates on level 2¢ + 2 are
AND-gates) and leveled, then the profile will also be very regular. This special shape
of a profile is called W-cycle! (cf. Figure 2). Because we only consider logspace and
at least polynomial time AuxPDAs, for the input and working tapes of the AuxPDAs
we can use the above mentioned technique for space bounded Turing machines and,
therefore, we altogether get an oblivious AuxPDA.

To simulate a circuit C' (which itself simulates a given AuxPDA M), we employ
nearly the same technique as in the preceding subsection. The only difference is that
when we evaluate an AND-gate g (which w.l.o.g. shall have exactly two inputs), we
do this in a slightly modified way. First, we push the left input gate of g on the
store, then we evaluate it, afterwards we pop it from the store, and, finally, we

!This name is taken from numerical mathematics, where it is used in the theory of multi-grid
methods.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

34 ROLF NIEDERMEIER AND PETER ROSSMANITH

VAN VA AAN

FIGURE 2. W-cycles.

compute the right input gate of ¢ and do the analogous computation for this right
gate. Note that we only need the store for the evaluation of AND-gates. Because
of the ‘symmetry’ of both the sub-circuits of the AND-gate this altogether yields a
profile in which the following holds. If we divide it into two equal parts (left and
right) both are symmetric to each other and this also holds for a recursive division of
these parts. In this way, we gain profiles in W-cycle form (Figure 2), i.e., a special
case of obliviousness. The following classes with prefix ‘W-cycle’ are defined in the
intuitive way.

Theorem 28. (1) NAPDAF = (W-cycle)NAPDAF.
(2) UnambAPDA' = (W-cycle)UnambAPDA®.
(3) StUnambAPDA! = (W-cycle)StUnambAPDA®.

Proof. To prove Theorem 28 we make use of the equations NAPDA* = SACF
(Venkateswaran, 1991), UnambAPDA' = WeakUnambSAC', and UnambSAC' =
StUnambAPDA' (Theorem 15). According to Proposition 1 and subsequent remarks
circuits of all these classes can be assumed to be leveled. Furthermore, it only needs
little effort to see that all circuits of these classes can be made strictly alternating
by at most doubling the depth. Now the simulation technique described above
Theorem 28 provides the desired result. [

The question whether UnambAPDA* = WeakUnambSAC* and StUnambAPDAF =[]
UnambSAC* hold for k& > 1, remained open in Section 4. We cannot fully answer this
question, but if we confine the consideration to W-cycle-oblivious AuxPDA classes,
we get the desired equality for arbitrary k.

Theorem 29. (1) (W-cycle)UnambAPDA* = WeakUnambSAC”.
(2) (W-cycle)StUnambAPDA* = UnambSACF.

Proof. The ‘O’-directions only require a straightforward generalization of the proof of
Theorem 28, where essentially WeakUnambSAC' C (W-cycle)UnambAPDA' (resp.
UnambSAC' C (W-cycle)StUnambAPDA') was shown, to arbitrary & > 1.

To prove the reverse direction, we make use of the ‘totally symmetric’ shape
of the profiles for W-cycle-oblivious AuxPDAs. The essential advantage of these
W-cycle-oblivious AuxPDAs is that we always can separate a profile into two equal
sized paths. Thus it is not necessary to store information about the length of the
computation paths in order to get a balanced and unique decomposition of profiles
(and thus, computation paths). We consider pairs of surface configurations in order

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 35

A E B

FI1GURE 3. Decomposition components of a W-cycle profile.

to construct the simulating circuit. Mainly we need gates named (A, B) that compute
whether there exists a computation from surface configuration A to B, where the
level of the push-down store is the same for A and B and does not go below this level
during the computation (cf. Figure 3). These gates are defined as

(A,B)=13¢,.¢(C,D) N{F,G) N (A—C,D—E) N(E—~F,G—B),

where, for example, (A — C,D — E) computes whether there is one push-step
from A to C and one pop-step from D to E (where first a symbol a is pushed
and then popped). Of course, (A, A) has value 1 for every surface configuration A.
The output gate of the simulating circuit then is (S, F), where S (resp. F') are
the uniquely defined start (resp. accepting end) (surface) configurations (both with
empty push-down store) of the simulated AuxPDA.

The correctness and the weak (resp. strong) unambiguity of such defined circuits
is shown similar as in the proofs of Lemma 11 and 12, respectively. Because there
are only polynomially many surface configurations and we recursively divide profiles
into two equal sized paths, a polynomial size and a depth of O(logk n) of the circuit
suffice. [

7. CONCLUSION AND OPEN QUESTIONS

In summary, we feel that we have shed some more light on the concept of
unambiguity in the realm of NC. We hope that the results of this paper clarified
relations between AuxPDAs and semi-unbounded fan-in circuits. Furthermore,
it should have become apparent how useful characterizations of AuxPDAs by
semi-unbounded fan-in circuits are in order to employ inductive counting methods or
to gain normal form results. We have come to the conclusion that strong unambiguity
seems to be a concept more suitable for the consideration of classes within the
NC-hierarchy than (the conventional) weak unambiguity is. This impression derives
from the facts that CREW-PRAMs are characterized by a strongly unambiguous
circuit class (Lange, 1993) as well as LOGUCFL shows tight relations to strongly
unambiguous circuits and AuxPDAs. The usefulness of strong unambiguity and
related concepts can informally be explained if one thinks of simulations of
such restricted automata. A simulation ‘in parallel” often deals with the whole

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

36 ROLF NIEDERMEIER AND PETER ROSSMANITH

computation graph of the simulated machine, so restrictions only for accepting
computation paths often do not suffice for the possibility of efficient simulations. To
conclude, Figure 4 comprises several of the results of Sections 4 and 5 settled in the
NC-hierarchy between NC! and AC!.

Several results obtained in Section 4 only hold for polynomial time (‘& = 17)
computations. Thus naturally the question arises whether these results can be
generalized to super-polynomial time bounds (‘4 > 1’). The same question can be
posed for the normal form results of Section 6. For Section 5 the general question for
further applications of inductive counting on circuits emerges.

Acknowledgement. We thank Gerhard Buntrock and Birgit Jenner for fruitful
discussions. In addition, we are grateful to the anonymous referees for several
corrections, insightful remarks, and their comprehensive reports. We are particularly
indebted to Klaus-Jorn Lange for making us familiar with the considered problems,
for his support and encouragement, and for allowing us to include results of (Lange

and Rossmanith, 1990).

REFERENCES

Ajtai, M., Komlés, J., and Szemerédi, E. (1983). Sorting in clogn parallel steps.
Combinatorica, 3:1-19.

Alvarez, C. and Jenner, B. (1993). A very hard log-space counting class. Theoretical
Computer Science, 107:3-30.

Balcézar, J., Diaz, J., and Gabarré, J. (1990). Structural Complezity Theory I and II.
Springer.

Borodin, A. (1977). On relating time and space to size and depth. STAM Journal on
Computing, 6(4):733-744.

Borodin, A., Cook, S. A., Dymond, P. W., Ruzzo, W. L., and Tompa, M. (1989).
Two applications of inductive counting for complementation problems. SIAM
Journal on Computing, 18(3):559-578.

Buntrock, G. (1989). Logarithmisch platzbeschrinkte Simulation. Dissertation,
TU Berlin. (in German).

Buntrock, G., Hemachandra, L. A., and Siefkes, D. (1993). Using inductive counting
to simulate nondeterministic computation. Information and Computation,
102:102-117.

Buntrock, G., Jenner, B., Lange, K.-J., and Rossmanith, P. (1991). Unambiguity and
fewness for logarithmic space. In Budach, L., editor, Proc. of 8th Conference on
Fundamentals of Computer Science, number 529 in Lecture Notes in Computer
Science, pages 168-179, Gosen, Federal Republic of Germany. Springer-Verlag.

Chandra, A. K., Kozen, D., and Stockmeyer, L. (1981). Alternation. Journal of the
ACM, 28:114-133.

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 37

AC! = CRCW!

o

b c d e
UnambAC! = CREW! Co-SAC! = SAC! = NAPDA'! = LOGCFL

WeakUnambSAC 725 UnambAPDA?
Th 23 Th 19.

Co-UnambFAC" ™2° UnambFAC! Ambiguous-APDA(n0(%)

SR Ambinoe:

UnambSAC! ™% StUnambAPDA!
Th 16
LOGUCFL

e f
DAPDA! = LOGDCFL = CROW!

NC*
¢(Stockmeyer and Vishkin, 1984)
®(Lange, 1993)
°(Borodin et al., 1989)
(Venkateswaran, 1991)
¢(Sudborough, 1978)
f(Dymond and Ruzzo, 1986)

Q

FIGURE 4. Old and new relationships for classes between NC' and AC".

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

38 ROLF NIEDERMEIER AND PETER ROSSMANITH

Cook, S. A. (1971). Characterizations of pushdown machines in terms of
time-bounded computers. Journal of the ACM, 18:4-18.

Cook, S. A. (1979). Deterministic CFL’s are accepted simultaneously in polynomial
time and log squared space. In Proc. of 11th ACM Symposium on Theory of
Computing, pages 338-345.

Dymond, P. and Ruzzo, W. L. (1986). Parallel RAMs with owned global memory and
deterministic language recognition. In Proc. of 12th Colloguium on Automata,
Languages and Programming, number 226 in Lecture Notes in Computer Science,
pages 95-104. Springer-Verlag.

Fortune, S. and Willie, J. (1978). Parallelism in random access machines. In Proc. of
10th ACM Symposium on Theory of Computing, pages 114-118, San Diego, Cal.

Goldschlager, L. M. (1978). A unified approach to models of synchronous parallel
computation. In Proc. of 10th ACM Symposium on Theory of Computing, pages
89-94, San Diego, Cal.

Goldschlager, L. M. (1982). A universal interconnection pattern for parallel
computers. Journal of the ACM, 29(3):1073-1086.

Grollmann, J. and Selman, A. (1988). Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17:309-335.

Hagerup, T. and Radzig, T. (1990). Every robust CRCW PRAM can efficiently
simulate a PRIORITY PRAM. In Proc. of 2nd ACM Symposium on Parallel
Algorithms and Architectures, pages 117-124, Isle of Crete, Greece.

Harju, T. (1979). A simulation result for the auxiliary pushdown automaton. Journal
of Computer and System Sciences, 19:119-132.

Harrison, M. A. (1978). Introduction to Formal Language Theory. Addison-Wesley.

Hartmanis, J. and Hemachandra, L. A. (1988). Complexity classes without machines:
On complete languages for UP. Theoretical Computer Sctence, 58:129-142.

Hartmanis, J. and Yesha, Y. (1984). Computation times of NP sets of different
densities. Theoretical Computer Science, 34:17-32.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory,
Languages and Computation. Addison-Wesley.

Ibarra, O. H., Jiang, T., and Ravikumar, B. (1988). Some subclasses of context-free
languages in NC!. Information Processing Letters, 29:111-117.

Immerman, N. (1988). Nondeterministic space is closed under complement. SIAM
Journal on Computing, 17(5):935-938.

Karp, R. M. and Ramachandran, V. (1990). A survey of parallel algorithms
for shared-memory machines. In van Leeuwen, J., editor, Algorithms and
Complexzity, volume A of Handbook of Theoretical Computer Science, chapter 17,
pages 869-932. Elsevier.

Kasami, T. (1972). A note on computing time for recognition of languages generated
by linear grammars. Information and Control, 10:209-214.

Lange, K. (1990). Unambiguity of circuits. In Proc. of 5th Conference on Structure in

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

UNAMBIGUOUS AUXPDAS AND CIRCUITS 39

Complexity Theory, pages 130-137.

Lange, K.-J. (1993). Unambiguity of circuits. Theoretical Computer Science,
107:77-94.

Lange, K.-J. and Rossmanith, P. (1990). Characterizing unambiguous augmented
pushdown automata by circuits. In Rovan, B., editor, Proc. of 15th Symposium
on Mathematical Foundations of Computer Sctence, number 452 in Lecture
Notes in Computer Science, pages 399-406, Banska Bystrica, Czechoslovakia.
Springer-Verlag.

Mager, G. (1969). Writing pushdown acceptors. Journal of Computer and System
Sciences, 3:233-247.

Niedermeier, R. and Rossmanith, P. (1992). Unambiguous simulations of auxiliary
pushdown automata and circuits. In Simon, 1., editor, Proceedings of
1st Sympostum on Latin American Theoretical Informatics, number 583 in
Lecture Notes in Computer Science, pages 387-400, Sao Paulo, Brazil.
Springer-Verlag.

Parberry, 1. (1987). Parallel Complezity Theory. Pitman.

Pippenger, N. (1979). On simultaneous resource bounds. In Proc. of 20th IEEE
Symposium on Foundations of Computer Science, pages 307-311.

Rossmanith, P. and Rytter, W. (1992). Observations on logn time parallel
recognition of unambiguous context-free languages. Information Processing
Letters, 44:267-272.

Ruzzo, W. L. (1980). Tree-size bounded alternation. Journal of Computer and
System Sciences, 21:218-235.

Ruzzo, W. L. (1981). On uniform circuit complexity. Journal of Computer and
System Sciences, 22:365-383.

Rytter, W. (1987). Parallel time O(logn) recognition of unambiguous context-free
languages. Information and Computation, 73:75-86.

Stockmeyer, L. and Vishkin, U. (1984). Simulation of parallel random access
machines by circuits. STAM Journal on Computing, 13(2):409-422.

Sudborough, I. H. (1978). On the tape complexity of deterministic context-free
languages. Journal of the ACM, 25:405-414.

Szelepcsényi, R. (1988). The method of forced enumeration for nondeterministic
automata. Acta Informatica, 26:279-284.

Valiant, L. (1976). The relative complexity of checking and evaluating. Information
Processing Letters, 5:20-23.

Venkateswaran, H. (1991). Properties that characterize LOGCFL. Journal of
Computer and System Sciences, 43:380-404.

Vinay, V. (1991). Counting auxiliary pushdown automata and semi-unbounded
arithmetic circuits. In Proc. of 6th Conference on Structure in Complexity
Theory, pages 270-285.

Wagner, K. and Wechsung, G. (1986). Computational complezity. Reidel Verlag,

INFORMATION AND COMPUTATION, VOL. 118(2), pp. 227-245, 1995

40 ROLF NIEDERMEIER AND PETER ROSSMANITH

Dordrecht and VEB Deutscher Verlag der Wissenschaften, Berlin.

RoLF NIEDERMEIER, PETER ROSSMANITH, TECHNISCHE UNIVERSITAT MUNCHEN, FAKULTAT
FUR INFORMATIK, ARCISSTR. 21, D-8000 MUNCHEN 2, FED. REP. OF GERMANY

