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AbstractNotions of unambiguity for uniform circuits and AuxPDAs are studied and relatedto each other. In particular, a coincidence for counting and unambiguous versionsof AuxPDAs and semi-unbounded fan-in circuits is shown. Moreover, an improvedsimulation of LOGUCFL (the class of languages logspace many-one reducible tounambiguous context-free languages) by unambiguous circuits and AuxPDAs isdeveloped. Next, an inductive counting technique on semi-unbounded fan-in circuitsis presented and employed for several applications, especially an alternative prooffor the closure under complementation of LOGCFL. A cost-free simulation ofpolynomially ambiguity bounded AuxPDAs by unambiguous ones is given. A �rstnontrivial upper bound for a circuit class de�ned by Lange and its closure undercomplementation are indicated. Finally, a normal form for AuxPDAs is investigated.Inter alia it is shown that for unambiguous AuxPDAs operating in polynomial timeand logarithmic space a push-down height of O(log2 n) su�ces, thus parallelingresults for deterministic and nondeterministic AuxPDAs. It is pointed out thatwithout loss of generality the underlying machines of the most important AuxPDAclasses work obliviously.



Information and Computation, Vol. 118(2), pp. 227–245, 19954 ROLF NIEDERMEIER AND PETER ROSSMANITH1. IntroductionThe major aim of computational complexity theory is to decide which problemsare e�ciently solvable. To tackle this question, in general three cases aredistinguished (Parberry, 1987):(a) E�ciency in the sequential case means polynomial time computations,(b) e�ciency in the parallel case with unlimited parallelism leads to complexityclasses within polylogarithmic space due to the parallel computationthesis (Goldschlager, 1982).(c) e�ciency in the parallel case with a limited amount of hardware, i.e., apolynomial number of processors, yields the class of problems commonlycalled NC.In all three cases the nondeterminism vs. determinism problem plays a decisive rolefor the development of e�cient algorithms.In this paper we will deal with classes within the NC-hierarchy. NC is a fairly robustclass. It was introduced by Pippenger (1979) and named by Cook (1979). NC canbe characterized in terms of several parallel models, in particular PRAMs (Fortuneand Willie, 1978; Goldschlager, 1978), alternating Turing machines (Chandra et al.,1981), uniform circuits (Borodin, 1977; Ruzzo, 1981), and polynomially time boundedauxiliary push-down automata (AuxPDAs) (Cook, 1971). For the question ofdeterminism vs. nondeterminism within NC AuxPDAs are the most suitable model.An AuxPDA is a space bounded Turing machine with an additional unboundedpush-down store. Since AuxPDAs are special Turing machines we immediately havedeterministic and nondeterministic versions. For the moment, we only considerAuxPDAs that are simultaneously logarithmically space bounded and polynomiallytime bounded. These machines show strong relations to context free languages(CFLs) or, to be more precise, to their closure under log-space many-one reductions:Sudborough (1978) characterized LOGCFL by nondeterministic AuxPDAs andLOGDCFL by deterministic AuxPDAs. So the question of nondeterminism vs.determinism can be stated as LOGDCFL ?= LOGCFL. One obvious approach to thisquestion is to investigate a natural concept between these two: unambiguity. Theconcept of unambiguity took its origin in the theory of formal languages, where thedemand for the existence of at most one derivation tree led to the considerationof unambiguous CFLs (UCFLs). In this way we naturally get LOGUCFL as aclass between LOGDCFL and LOGCFL, whose relation to AuxPDA classes and theNC-hierarchy will be investigated in this paper. In the �eld of polynomial time theconcept of unambiguity led to UP introduced by Valiant (1976), for space boundedcomputation we have e.g. UL (�Alvarez and Jenner, 1993; Buntrock et al., 1991). UP(resp. UL) consists of those languages accepted by polynomially time bounded (resp.logarithmically space bounded) Turing machines which have at most one acceptingcomputation path. Machines restricted in this way are commonly called unambiguous.



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 5Whereas UP and UL already obtained considerable attention, the task of this workwill be to investigate unambiguity for AuxPDAs, i.e., within the NC-hierarchy.Recently, another approach towards unambiguity in the NC-hierarchy was madeby Lange (1993). He de�ned unambiguous circuits in order to provide the up tothen lacking characterization of CREW-PRAMs in terms of circuits. And indeed, hecharacterized CREW-PRAMs by an unambiguous version of AC-circuits, thus endingthe isolation of this important PRAM class. Note that in contrast to CRCW-PRAMs(Stockmeyer and Vishkin, 1984) and CROW-PRAMs (Dymond and Ruzzo, 1986)up to then no characterization of CREW-PRAMs by another computational modelwas known. A �rst hint for the \unambiguous behavior" of CREW-PRAMs wasgiven earlier by Rytter (1987), who showed that LOGUCFL is contained in the classof languages recognized by CREW-PRAMs in logarithmic time using polynomiallymany processors. The central idea of Lange's de�nition of unambiguous circuitsis the introduction of vulnerable gates, i.e., gates which may receive at most oneinput with value 1 (in the case of OR-gates) resp. 0 (in the case of AND-gates).However, this de�nition seems to di�er considerably from the conventional notion ofunambiguity for automata given above. Thus in this work we introduce so-calledweakly unambiguous circuits, which, by de�nition, have at most one acceptingsubtree. And indeed it will turn out that those circuits capture the conventionalnotion of unambiguity for AuxPDAs. On the other hand, we introduce the notionof strong unambiguity for automata, which corresponds to Lange's de�nition ofunambiguous circuits. In this way one of the implicit consequences of this work willbe the demand for two notions of unambiguity | one for the world of NC, i.e., strongunambiguity, and one for the sequential world, i.e. (weak) unambiguity.In the following we provide a survey on the internal structure of the paperincluding concise statements of the main results. In the next section all the basicnotions and de�nitions needed are supplied. Afterwards, in Section 3, we introducestrong and weak unambiguity and some generalizations for circuits as well as forAuxPDAs.In Section 4 we develop new, improved simulations between semi-unboundedfan-in circuits and AuxPDAs. The major aim of this section is to ameliorateVenkateswaran's equality SACk = NAPDAk (Venkateswaran, 1991) �rst of all inorder to get simulations where one accepting computation is simulated by oneaccepting subtree. This is necessary to provide simulations between the correspondingunambiguous models. Venkateswaran's simulation does not have this property.By way of contrast, it is well known that most reductions between NP-completeproblems preserve the number of solutions. For example, this holds for thesatis�ability problem or Hamiltonian paths. Unfortunately, this is not true at all inthe case of SAC1 and NAPDA1. Venkateswaran's simulation of AuxPDAs by circuitsincorporates a number of accepting subtrees which exceeds the original number ofaccepting paths tremendously. Our improved simulation will yield the equality of



Information and Computation, Vol. 118(2), pp. 227–245, 19956 ROLF NIEDERMEIER AND PETER ROSSMANITHthe counting versions of the above classes for k = 1, i.e., #SAC1 = #APDA1 andprovides characterizations of weakly and strongly unambiguous AuxPDAs by theirsemi-unbounded fan-in counterparts in the �eld of circuits. Note that to get ananalogous result to SAC1 = NAPDA1 in the unambiguous world is particularlyuseful, since such a simulation result allows to study properties of unambiguousAuxPDAs in the context of a static, combinatorial model. A further result ofSection 4 will be the inclusion of LOGUCFL in a strongly unambiguous circuit class.On the one hand this improves a result of Lange (1993), where only the inclusionof LOGDCFL in this class could be shown. On the other hand, it also amelioratesRytter's inclusion LOGUCFL � CREW1 (Rytter, 1987), since the above circuit classis clearly included in CREW1.In Section 5 a new inductive counting technique for semi-unbounded fan-in circuitsis presented, which due to the characterization results of Section 4 enables thecounting of accepting paths of an AuxPDA. For a lot of problems the abilityto guess nondeterministically is a crucial prerequisite for solving them e�ciently.However, nondeterministic computations involve up to exponentially many acceptingcomputations. There may be problems which are really in need of such an abundanceof nondeterminism, but there also may be problems where a smaller amount ofnondeterminism, say a polynomially bounded number of computation paths betweenarbitrary con�gurations, su�ces. Simulations of nondeterminism by determinism areknown only by machines which need drastically more resources. This is true for spacebounded, time bounded, and AuxPDA classes. The best known results in thesesettings are(a) NP � DEXP,(b) NL � DSPACE(log2 n),(c) NAPDA1 � DAPDA2.Until now it is still not clear whether the simulation of nondeterministic AuxPDAscan be done e�ciently by deterministic ones when the ambiguity is limited.Notwithstanding, we will show that an unambiguous AuxPDA can simulate anondeterministic one much better than a deterministic one if the degree ofnondeterminism is not too high. It is proved that polynomial ambiguity boundedAuxPDAs operating in polynomial time and logarithmic space can be simulatedby unambiguous ones within the same time and space bounds. A similar resultfor space bounded computations was obtained by Buntrock et al. (1993). However,here unambiguous computations beat deterministic ones only for sub-polynomialambiguity�, and a simulation without space and time penalty is only possible forconstant ambiguity. Our simulation can deal with polynomial ambiguity with neither�Buntrock et al. (1993) regarded the special case of polynomial ambiguity as the mostinteresting one. Nevertheless, in (Buntrock et al., 1991) it was shown that in this case even asimulation by deterministic AuxPDAs (instead of unambiguous AuxPDAs) within the same timeand space bounds exists.



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 7time nor space penalty. In addition, there are exceptions where our simulationtechnique still yields better results: For a certain class of semi-unbounded fan-incircuits de�ned in (Lange, 1993) which even involve exponential ambiguity (i.e.,an exponential number of accepting subtrees which is the highest number possibleeven for unambiguous circuits) nevertheless a \cost-free" simulation by unambiguousAuxPDAs is possible. This answers an open question posed by Lange. In addition, itis demonstrated that this circuit class is closed under complementation. Finally, itshould be noted that a corollary to the basic inductive counting lemma of this sectionprovides a new proof for the closure under complementation of SACk (and, as aconsequence, of LOGCFL), a result due to Borodin et al. (1989).In Section 6 some new normal form theorems for AuxPDAs are proved and severalold ones are improved. In particular, we show that deterministic, nondeterministic,strongly and weakly unambiguous AuxPDAs work without loss of generalityobliviously. That is, the movements of all working-heads do not depend on theinput except its length. Prior to this, we obtain the restriction of push-downheights especially for unambiguous AuxPDAs. These e�ects all are enabled by thecharacterizations of AuxPDAs by circuits and complete results given in (Dymondand Ruzzo, 1986) and (Ruzzo, 1980).In the end, in Section 7, we will brie
y recapitulate the main techniques andresults of this work. Moreover, we discuss perspectives for future work and remainingopen questions. 2. PreliminariesWe assume familiarity with basic facts and de�nitions of structural complexitytheory as to be found in (Balc�azar et al., 1990), (Hopcroft and Ullman, 1979),or (Wagner and Wechsung, 1986). In order to keep the paper readable for thenonspecialist reader, here we provide the central notions used in this work.Without loss of generality, we will only consider languages over alphabet f0; 1gwhose symbols also will be interpreted as Boolean values true and false.PRAMs (parallel random access machines), introduced by Fortune and Willie (1978)and Goldschlager (1978), only play a minor role in this paper. So we only de�ne thePRAM-complexity classes and refer to the literature, e.g., (Karp and Ramachandran,1990; Parberry, 1987), for details. PRAMs are classi�ed accordingly to the settlement(concurrent (C), exclusive (E), owner (O)) of read and write con
icts on globalmemory. With XRYWk; k � 1;X; Y 2 fC;E;Og we denote the classes of languageswhich are recognizable in time O(logk n) by XRYW-PRAMs using polynomiallymany processors.(Boolean) Circuits are one of the two fundamental computational models of thispaper. A circuit for inputs of size n is an acyclic directed graph whose nodes (calledgates) are labeled with Boolean operators. Nodes of indegree zero are labeled fromthe set f0; 1; x1; x1; : : : ; xn; xng, where x1; : : : ; xn are the input nodes of the circuit



Information and Computation, Vol. 118(2), pp. 227–245, 19958 ROLF NIEDERMEIER AND PETER ROSSMANITHand x1 (1 � i � n) denotes the negated value of xi. All the other nodes are labeled aseither AND- or OR-gates. Note that we do not include negation gates in circuits. Ingeneral, due to De Morgan's laws this means no restriction, because we can `push'negations to the input gates. However, it is a restriction for so-called semi-unboundedfan-in circuits. Since we are only interested in circuits accepting languages, ourcircuits have exactly one node with outdegree zero, that is the output gate. A circuitaccepts a string w 2 f0; 1gn i� its output gate evaluates to 1 on input w. Observethat in the context of circuits one often speaks of fan-in (resp. fan-out) instead ofindegree (resp. outdegree). The size of a circuit is the number of gates it contains.The depth is the length of the longest directed path from some input gate to theoutput gate.A circuit family fCn j n 2 INg is an in�nite set of circuits, where Cn is a circuitfor inputs of size n. An important requirement for circuits is that of uniformity. Acircuit family fCn j n 2 INg is called logspace-uniform i� there exists a deterministicTuring machine which computes a function n! hCni (where hCni is an encoding ofcircuit Cn) in space log n (see (Ruzzo, 1981) for details).Next, we de�ne three basic circuit complexity classes. We distinguish between thefan-in allowed for AND- and OR-gates. That is, unbounded fan-in means that allgates may have unbounded (non-constant) indegree, bounded fan-in means that allgates have to have constant indegree (w.l.o.g. indegree two), and semi-unboundedfan-in means that OR-gates may have unbounded fan-in, but AND-gates havebounded fan-in. So we have NCk (resp. SACk, ACk), k � 1, as the classes oflanguages recognized by polynomial size, O(logk n) depth bounded, logspace-uniformcircuits with bounded (resp. semi-unbounded, unbounded) fan-in.The following normal form for circuits will be of central importance for some of theproofs in this paper. A circuit C is called leveled if all gates of C in depth d receivetheir inputs only from gates in depth d � 1. This normal form is easily achieved forthe above de�ned circuit classes.Proposition 1. For NCk, SACk, and ACk it can be assumed that only leveled circuitsare used.Proof. (construction) Let C be a (non-leveled) circuit and let ~C denote an equivalent,leveled circuit to be constructed. For each depth of ~C we make a replica of each gateof C. This again yields polynomial size and the same depth as C. The replicas areconstructed as follows:(1) In depth 0, there are only inputs and constant gates. The replicas of AND-and OR-gates are gates with constant value 0.(2) In depth i > 0, the replica of an AND-gate (resp. an OR-gate) of C again is anAND-gate (resp. OR-gate) whose inputs are the replicas in depth i� 1 of theinputs of the \original" gate in C. The replicas of input and constant gates



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 9simply are fan-in two AND-gates whose inputs are the replicas in depth i� 1of the \original" gates.The equivalence of C and ~C with respect to the recognized languages can be provedby a simple induction on the circuit depth.A similar construction is used in (Borodin et al., 1989), where an even strongernormal form is generated. It is easy to see that an analogous result to Proposition 1also holds for most of the circuit classes de�ned in the next section.The second fundamental computational model in this work are auxiliary push-downautomata (AuxPDAs) introduced by Cook (1971). An AuxPDA is a Turing machinewith unrestricted push-down store in addition to the working tape. We will considerAuxPDAs with simultaneous bounds on time and space. Observe that the spaceon the push-down store is \free", i.e., it does not count for the space bound. Inthis paper we will concentrate on AuxPDAs with a polynomial running time and apoly-log space working tape.As in the case of circuits, we will examine AuxPDAs given in some normal form.As usual, we require that accepting computations always end up with an emptypush-down, an empty working tape, all heads at a �xed position and an uniquelydetermined �nal state. Altogether, this means that we have exactly one acceptingcon�guration. Furthermore, we require the AuxPDAs always to push on or pop fromthe push-down in each computation step. Observe that these demands do not meanany restrictions for nondeterministic or deterministic AuxPDAs.An important notion for AuxPDAs is that of surface con�gurations (Cook, 1971).A surface con�guration of an AuxPDA consists of the topmost symbol on thepush-down store, the actual state, the contents of the working tape, and the positionsof the heads. Please note that in this way we exclude the contents of the push-downstore except for the topmost symbol. Surface con�gurations stand in close relation topro�les of computations. A pro�le is a graph which plots push-down height versusrunning-time. (The name pro�le was introduced by Vinay (1991).) In pro�les foreach time step we may enter surface con�gurations, thus describing a computationfully by its surface con�gurations and the \push-down behavior".The classes of languages recognized by deterministic (nondeterministic),logarithmically space bounded AuxPDAs in time 2O(logk n) are denoted by DAPDAk(NAPDAk).We complete this section with two general notions for complexity classes. Apre�x `F ' is used to denote the class of functions instead of the class of languagescomputed by deterministic (or, as we will see later on, unambiguous) machines.Herein, the output is placed on a special write-only-tape which does not count forthe space bound. For example, FP (resp. FAPDAk) denotes the functional classescorresponding to P (resp. DAPDAk). For nondeterministic machines (and also forcircuits) we make use of the counting operator #. This results in functions computing



Information and Computation, Vol. 118(2), pp. 227–245, 199510 ROLF NIEDERMEIER AND PETER ROSSMANITHthe number of accepting computations of nondeterministic machines for some �xedinput. For example, #P (resp. #NAPDAk) are the classes of functions which mapinput words to the number of accepting computations on an NP- (resp. NAPDAk-)machine. 3. UnambiguityIn recent time the concept of unambiguity has won considerable attention insequential as well as in parallel complexity theory (e.g. (Buntrock et al., 1993;Hartmanis and Hemachandra, 1988; Lange, 1993; Rytter, 1987; Valiant, 1976)).Additionally, unambiguity plays an important role in cryptography (Grollmannand Selman, 1988), formal languages (where this concept originally comes from)(Harrison, 1978; Hopcroft and Ullman, 1979), and also shows tight connections tonondeterministic function classes: A commonly accepted functional analog of NPis the class SVNP (single valued NP) introduced by Hartmanis and Yesha (1984),which is de�ned in terms of machines that output a function value on exactly oneaccepting path. In fact, this means that these machines have to be unambiguous. Ingeneral, a machine is called unambiguous if it has at most one accepting computationpath for arbitrary input words. Note that it is undecidable whether a machine isunambiguous, see, e.g., (Hartmanis and Hemachandra, 1988). Subsequently, we willre�ne this notion for the purpose of a more precise handling of parallel complexityclasses. In particular, the �ne structure between NC1 and AC1 will be investigatedby means of various unambiguous circuit and AuxPDA classes.3.1. Unambiguity of circuits. Unambiguous circuits were introduced byLange (1993)y This was done in order to get a characterization of CREW-PRAMs interms of circuits, thus ending the \isolation" of this important PRAM class.In order to de�ne unambiguous circuits, we have to introduce the notion ofvulnerable gates. An OR-gate (resp. AND-gate) is called vulnerable if it does notreceive a 1 (resp. 0) by two or more of its predecessors. Otherwise, the value of thegate is unde�ned.De�nition 2. (1) UnambACk (resp. UnambSEACk) denotes the class of languagesrecognized by ACk- (resp. SACk-) circuits which ful�ll the additionalrequirement that all unbounded gates are vulnerable and none of them everhas an unde�ned value.(2) UnambSACk is de�ned similar to UnambSEACk, but here additionally theOR-gates of bounded fan-in have to be vulnerable.yLange (1993) changed the notation of unambiguous circuit complexity classes compared to thepreliminary version (Lange, 1990; Lange and Rossmanith, 1990; Niedermeier and Rossmanith,1992). For the sake of standardization we adopt the notion of (Lange, 1993).



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 11In this setting Lange proved UnambACk = CREWk (k � 1). Here we willconcentrate on the two semi-unbounded fan-in classes and investigate their relationsto AuxPDAs and the NC-hierarchy.The above notion of unambiguity for circuits seems to be rather di�erent from theconventional concept for automata mentioned in the beginning. But the requirementfor the existence of at most one accepting computation path for automata canbe naturally found again in the �eld of circuits. Here one has to demand thatthere exists at most one accepting subtree for arbitrary input words. An acceptingsubtree T (C) of a circuit C is de�ned analogously to an accepting subtree of anautomaton (Venkateswaran, 1991):� T (C) includes the output gate of C,� for any AND-gate g included in C, all inputs of g in C have to be included inT (C) as inputs of g,� for any OR-gate g included in C, exactly one input of g in C has to beincluded in T (C) as input of g,� any constant gate or input gate included in T (C) must have value one.This leads to the following de�nition of weakly unambiguous, semi-unbounded fan-incircuits.De�nition 3. The class WeakUnambSACk consists of all languages recognized bySACk-circuits that have at most one accepting subtree.Another possibility to de�ne weakly unambiguous circuits is to demand the samerestrictions as in the strongly unambiguous case, but only for gates within acceptingsubtrees, not for the whole circuit. For WeakUnambSAC-circuits this would meanthat all OR-gates included in accepting subtrees must be vulnerable. With thehelp of this second way of de�ning unambiguity for circuits it is possible to de�neWeakUnambSEACk and WeakUnambACk in an analogous way. One simply demandsthat within accepting subtrees all unbounded fan-in gates are vulnerable.Finally, we de�ne an extension of circuits belonging to the class UnambSACk, i.e.,so-called ambiguity bounded circuits. Here, corresponding to the notion of strongunambiguity, we demand that the number of accepting subtrees of each gate isbounded by some function in the input length.De�nition 4. Ambiguous-SACk(a(n)) is the class of all languages recognized bySACk-circuits, where all gates have at most a(n) accepting subtrees.By de�nition, Ambiguous-SACk(1) coincides with UnambSACk.3.2. Unambiguity of AuxPDAs. Independent from the distinction betweenweakly and strongly unambiguous circuits, there are also two natural notions ofunambiguity for AuxPDAs which we will again call weak and strong unambiguity.



Information and Computation, Vol. 118(2), pp. 227–245, 199512 ROLF NIEDERMEIER AND PETER ROSSMANITHFirst, we de�ne complexity classes obtained via (conventional) weakly unambiguousAuxPDAs.De�nition 5. The class of languages recognized by logarithmically space boundedand 2O(logk n) time bounded AuxPDAs, which have at most one accepting computationpath, is denoted by UnambAPDAk.The unambiguous circuits de�ned by Lange (and, therefore, CREW-PRAMs)correspond to the notion of strong unambiguity. Therefore, we also take a look atstrong unambiguity for automata. An automaton is called strongly unambiguous ifthere is at most one computation path between any two of its con�gurations. Pleasenote that this includes con�gurations that are not even reachable from the initialcon�guration and that this restriction must hold for every possible input word. Interms of AuxPDAs we get the following complexity classes.De�nition 6. The class of languages recognized by log n space and 2O(logk n) timebounded strongly unambiguous AuxPDAs is denoted by StUnambAPDAk.Observe that strong unambiguity is a concept fairly near to determinism. Theadditional power strong unambiguity provides in comparison to determinism isfairly small, because in both concepts there is only one path allowed betweentwo arbitrary con�gurations. Nevertheless, both notions seem to di�er due tothe fact LOGDCFL = DAPDA1 (Dymond and Ruzzo, 1986) and the inclusionLOGUCFL � StUnambAPDA1 (Theorem 16). The latter inclusion reveals thatunambiguity in the world of formal languages (where, anyway, this concepttook its origin) corresponds to strong unambiguity. The reason for this is thepossibility to eliminate useless nonterminals which yields an unambiguous grammarG = (N;T; P; S) for which all leftmost derivations A �) �;A 2 N;� 2 (N [ T )� areunique.This property was crucial for Rytter's inclusion LOGUCFL � CREW1 (Rytter,1987). Further evidence for the strong unambiguity of formal languages is given bythe inclusion of unambiguous linear context-free languages in strongly unambiguous,logarithmic space (that is UnambLIN � StUL (Buntrock et al., 1991)), whichparallels the inclusions DLIN � L and NLIN � NL (Kasami, 1972; Ibarra et al.,1988).Finally, it will prove useful to consider a generalization of strong unambiguity,where we bound the number of computation paths between the con�gurations.De�nition 7. (1) An automaton M is a(n) ambiguity bounded if there are atmost a(n) computation paths between any two con�gurations of M for allinputs w with jwj = n.(2) The class of languages recognized by a(n) ambiguity bounded AuxPDAs intime 2O(logk n) and space log n is denoted by Ambiguous-APDAk(a(n)).



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 13Clearly, by de�nition we have Ambiguous-APDAk(1) = StUnambAPDAk. Strongunambiguity of AuxPDAs seems to be more adequate for parallel complexity theorythan weak unambiguity does. If we want to simulate a machine in some sensee�ciently in parallel, it often comes out that it is necessary to have a restrictionon the whole computation graph and not only for the parts belonging to acceptingcomputations. This will become clearer when we consider simulations of AuxPDAsby circuits.4. Simulations between semi-unbounded fan-in circuits and AuxPDAsIn this section we present a simulation of AuxPDAs by circuits where the numberof accepting computations exactly transfers to the number of accepting subtrees.This improves the well-known simulation (Venkateswaran, 1991) of AuxPDAs bysemi-unbounded fan-in circuits, which incorporates a number of accepting subtreeswhich exceeds the original number of accepting paths tremendously. This precisesimulation makes it possible to prove the equality of the counting versions of SAC1and NAPDA1. In particular, it puts us in the position to give characterizations ofweakly and strongly unambiguous AuxPDAs in terms of the corresponding circuits.Furthermore, this simulation technique facilitates the application of a variation ofthe inductive counting technique (Immerman, 1988; Szelepcs�enyi, 1988), which yieldsa simulation of ambiguity bounded AuxPDAs by unambiguous ones within the sametime (up to a polynomial) and space (up to a constant factor) bounds.Subsequently, we precede as follows: At �rst, we prove three basic lemmata whichserve as a basis for the construction of semi-unbounded fan-in circuits simulatingAuxPDAs under preservation of the number of accepting computation paths.Afterwards, we give simulations of AuxPDAs by circuits and vice versa, thus provingseveral characterization results. Finally, we show LOGUCFL � UnambSAC1, whichimproves the inclusion LOGUCFL � CREW1 given by Rytter (1987) (due toLange (1993) the latter inclusion can also be stated as LOGUCFL � UnambAC1).4.1. Computation paths of AuxPDAs | three basic lemmata. In thefollowing we will deal intensively with computation paths. Therefore, it is necessaryto introduce some more notation concerning AuxPDAs (Cook, 1971; Ruzzo, 1980).In order to deal with computation paths, it will be useful to denote paths bytheir �rst and last (surface-)con�guration and their length. A (path) descriptionis a triple (A;B; i) consisting of two surface con�gurations A and B and an evennatural number i. A description is called realizable if there exists a path fromA to B in exactly i steps, where A and B have same push-down height and thelevel of the push-down does not go below this level during the computation. Notethat because of the requirements of the preliminary section (i.e., AuxPDAs arerequired to push or to pop in each step), i can only be an even number. In general,(A;B; i) represents several paths of length i between A and B. To construct circuits



Information and Computation, Vol. 118(2), pp. 227–245, 199514 ROLF NIEDERMEIER AND PETER ROSSMANITHsimulating AuxPDAs, it is essential to split computation paths continuously intoshorter and shorter paths until we end up with trivial paths, i.e., two-step transitions.The relation ` shows how such a decomposition of paths is done. Let x = (A;B; i),y = (C;D; j), and z = (E;B; k) be path descriptions. Then we write y; z ` x andz; y ` x i�(1) The level of the push-down is equal for A, E, and B,(2) there exists a computation from A to C in one step, pushing a symbol a ontothe push-down store during this step,(3) there exists a computation from D to E in one step, popping a from thepush-down store, and(4) j + k = i� 2.In such a way we can reduce the checking of the realizability of x to the checkingof the realizability of smaller paths y and z. In addition, it is important to remarkthat it is su�cient to utilize surface con�gurations in path descriptions due to thede�nition of `. Finally, identical push-down heights of A, E, and B in the case ofrealizability also imply that C and D have same push-down height and, moreover, jand k are always even.With the help of the decomposition relation ` it is already possible to constructa simulating circuit. We only need to check whether one of the path descriptions(S0; F0; i) is realizable, where S0 and F0 denote the uniquely determined start, resp.�nal, con�guration (with empty push-down store) and i is an even number boundedby the maximum running time of the simulated AuxPDA. Thus, we translate in astraightforward manner path descriptions (A;B; i) into gates hA;B; ii, whose inputsare determined by the relation `. (Observe that (A;B; 0) is realizable i� A = B.)This approach fails because the depth of the resulting circuit would not be optimal atall, since we do not use a `balanced' decomposition of computation paths.However, we will demonstrate in the next three lemmata that a balanced andunique decomposition of computation paths is possible, thus guaranteeing an optimaldepth for the simulating circuits as well as the preservation of the number of acceptingcomputations. The �rst lemma states that for a �xed computation path (A;B; i)there exists an uniquely determined subpath (C;D; i1) within (A;B; i), whichessentially denotes the point which will serve to split (A;B; i) in a well-balanced wayin di�erent subpaths.Lemma 8. Let (A;B; i) denote a realizable path description for a �xedcomputation path of length i � 2 between A and B. Then there exist uniquelydetermined subpaths (C;D; i1), (E;F; i2), and (G;D; i3) of (A;B; i) such that(E;F; i2); (G;D; i3) ` (C;D; i1) and i2; i3 � i=2 < i1.Proof. The proof is based on a \recursive descent" where we make crucial use of theproperties of the decomposition relation `. Always observe that we speak of one �xedcomputation path between A and B.



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 15If i = 2, then according to the de�nition of `, there exists a uniquely determinedsurface con�guration E such that (E;E; 0); (B;B; 0) ` (A;B; 2). Thus, especially(C;D; i1) = (A;B; i) holds.Now let i > 2. According to the de�nition of ` there exist uniquely determinedsubpaths ( ~E; ~F; j1) and ( ~G;B; j2) such that ( ~E; ~F ; j1); ( ~G;B; j2) ` (A;B; i). We haveto distinguish between two cases, one of them is trivial. We are done if j1 and j2 ful�llj1; j2 � i=2. If j1 and j2 do not meet this condition, then exactly one of j1 and j2must be greater than i=2. W.l.o.g. assume that j1 > i=2. Now decompose ( ~E; ~F; j1)according to ` and check whether the lengths of the computation paths of the`descendants' of ( ~E; ~F ; j1) are both less than or equal to i=2. This process continuesuntil we come to the point where this condition is ful�lled. Obviously, this processterminates since the length of the considered computation paths is at least decreasedby two (cf. de�nition of `). In addition, it is also straightforward to see that weend up with uniquely determined (E;F; i2), (G;D; i3), and (C;D; i1) satisfying therequired conditions.In Lemma 8 we could see that a �xed computation path can be split in threepaths. The �rst two paths are the subpaths (E;F; i2) and (G;D; i3) and the thirdone is the path (A;B; i) with `gap' (C;D; i1). This means that the veri�cation of therealizability of (A;B; i) can be reduced to showing that (E;F; i2), (G;D; i3), and thepath with gap (C;D; i1) are realizable. Before we get into details about this, let us�rst formalize the idea of paths with gap.A (description for a) path with gap (A; (C;D; j); B; i) consists of four surfacecon�gurations A, B, C, D and two even numbers i and j with j � i. A path withgap (A; (C;D; j); B; i) is called realizable i� A and B (resp. C and D) have samepush-down heights and there exists a computation path from A to C and one from Dto B with total number of steps j � i. Again the level of the push-down must not gobelow the level of A and B during the computation. In particular, (A; (C;D; i); B; i)is realizable i� (A;B) = (C;D).Now we can generalize the decomposition relation ` to computation paths withgap. Unfortunately, we have to distinguish between two cases, since now the gap maybe in one of two subpaths. However, both are handled in full analogy to pathswithout gaps. Let x = (A; (C;D; j); B; i) and, �rst, let y = (E; (C;D; j); F; k) andz = (G;B; l) or, second, let y = (E;F; k), z = (G; (C;D; j); B; l). Then we writey; z ` x and z; y ` x i� the level of the push-down is equal for A, G, and B, thereexists one step from A to E pushing a symbol a onto the store, and there is one stepfrom F to G popping a from the store and, �nally, k + l = i� 2. In general, a gap(C;D; j) is interpreted as if the two surface con�gurations C and D simply were thesame, i.e., as if the path from C to D would exist (without checking that). So(A; (C;D; j); B; i) is interpreted as a path of length j � i where C and D are regardedto be `one' surface con�guration. Lemma 9 is the analogue to Lemma 8, just stated



Information and Computation, Vol. 118(2), pp. 227–245, 199516 ROLF NIEDERMEIER AND PETER ROSSMANITHfor a �xed computation path with gap.Lemma 9. Let (A; (C;D; j); B; i), i� j � 2 denote a realizable path with gap. Thenthere exist uniquely determined paths y = (E; (C;D; j); F; i1) and either(1) z1 = (G; (C;D; j);H; i2) and z2 = (I; F; i3), such that z1; z2 ` y andi2 � j � (i� j)=2 < i1 � j or(2) z1 = (G;H; i2) and z2 = (I; (C;D; j); F; i3), such that z1; z2 ` y andi3 � j � (i� j)=2 < i1 � j.Proof. The proof is based on the same idea as the proof of Lemma 8. We just makeuse of the circumstance that the decomposition relation ` uniquely determines bothsubpaths of a given path (with gap). The only di�erence compared to Lemma 8 isthat now always the paths with the gap are chosen, until we �nd the y such that thesecond condition (concerning the length of paths) is true. Furthermore, we use thefact that the second condition uniquely determines the subpaths (with gap) y, z1,and z2.Lemma 9 will be used to decompose computation paths with gaps in a balancedway. In order to investigate the realizability of (A; (C;D; j); B; i) we con�ne ourselvesto examine the realizability of (A; (E;F; i1); B; i), z1, and z2. Here, both possiblesubpaths with gap have length less than or equal to half of the length of the wholepath with gap (A; (C;D; j); B; i). The arising subpath without gap may have amaximum length of i � j � 2 and will be split with the help of Lemma 8 in awell-balanced way.Up to now we only considered one �xed computation path (with gap). But ingeneral there are several computation paths guaranteeing the realizability of (A;B; i).In other words, this means that (A;B; i) usually represents several paths. Our aimin the next lemma is to show that the decompositions of Lemma 8 and Lemma 9preserve the number of paths, that is, for example, the number of paths of length ibetween A and B can be computed from the number of paths of the decompositioncomponents (A; (C;D; j); B; i), (E;F; i1), and (G;D; i2) of (A;B; i) (cf. Lemma 8).Let #(A;B; i) (resp. #(A; (C;D; j); B; i)) denote the number of paths between Aand B of length i (resp. the number of paths between A and B with gap (C;D; j) oflength i � j). We get the following statement for the decompositions of Lemma 8(resp. Lemma 9).Lemma 10.(1) #(A;B; i) = P#(A; (C;D; j); B; i) �#(E;F; i1) �#(G;D; i2);where the sum is taken over all combinations of surface con�gurations C,D, E,F , G and even numbers j, i1, and i2 such that (E;F; i1); (G;D; i2) ` (C;D; j)and i1; i2 � i=2 < j.



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 17(2) #(A; (C;D; j)B; i) =X#(A; (C1;D1; j1); B; i) �#(E; (C;D; j); F; i1) �#(G;D1; i2) +X#(A; (C1;D1; j1); B; i) �#(E;F; i1) �#(G; (C;D; j);D1; i2);where both sums are taken over all combinations of surface con�gurationsC1, D1, E, F , G and even numbers i1, i2, and j1 such that(E; (C;D; j); F; i1); (G;D1; i2) ` (C1; (C;D; j);D1; j1) and i1� j � (i� j)=2 <j1 � j for the �rst of the two sums and (E;F; i1); (G; (C;D; j);D1; i2) `(C1; (C;D; j);D1; j1) and i2 � j � (i� j)=2 < j1 � j for the second one.Proof.(1) As already mentioned before, Lemma 8 provides a unique decomposition ofa �xed computation path of length i between A and B in three uniquelydetermined sub-paths, where one of them has gap (C;D; j) and the othertwo (E;F; i1) and (G;D; i2) `�ll the gap'. Therefore, if we consider thenumber of all computation paths represented by (A;B; i), we have to lookat the number of all paths represented by the three path descriptions(A; (C;D; j); B; i), (E;F; i1), and (G;D; i2) obtained from Lemma 8. Observethat di�erent paths represented by (A;B; i) nevertheless may result in samedecomposition components, since they can di�er inside the subpaths. So aproduct #(A; (C;D; j); B; i) �#(E;F; i1) �#(G;D; i2) stands for the numberof paths of length i between A and B, which (in Lemma 8) all yield the samesurface con�gurations C, D, E, F , G and numbers i1, i2, and j. Finally,the sum has to be taken over all possibilities of how a path represented by(A;B; i) may be decomposed in di�erent components.(2) A similar argument together with Lemma 9 yields the corresponding claim forpath representations with gap.4.2. Exact simulations of AuxPDAs by circuits. In the preceding subsectioncomputation paths were decomposed in a unique and well-balanced way. In thissection the main idea is to translate path descriptions into gates that compute therealizability of the respective path descriptions. It will turn out that this methodresults in semi-unbounded fan-in circuits having a number of accepting subtreeswhich is the same as the number of accepting computations of the simulatedAuxPDAs.One fundamental result of this work concerns the counting versions of NAPDA1and SAC1. Remember that #APDA1 (resp. #SAC1) are the classes of functionswhich map an input word to the number of accepting computations (resp. acceptingsubtrees) of an (nondeterministic) AuxPDA (resp. semi-unbounded fan-in circuit).



Information and Computation, Vol. 118(2), pp. 227–245, 199518 ROLF NIEDERMEIER AND PETER ROSSMANITH^ _i1; i2 � i2 < jhE;F; i1i hG;D; i2ihA; (C;D; j); B; ii hA;B; iihA;B; i; i1; i2; jih(E;F; i1); (G;D; i2) ` (C;D; j)iFigure 1. Sub-circuit computing the realizability of (A;B; i).The following lemma provides the �rst step in the proof of the announced equality ofthese counting classes. The reverse direction will be given in the next subsection.Lemma 11. #APDA1 � #SAC1.Proof. Based on Lemma 10 we construct an SAC1-circuit C simulating anAuxPDA M with polynomial running time and logarithmic working space. Dueto the logarithmic space bound there only exist polynomially many surfacecon�gurations ofM .The circuit mainly consists of gates denoted by hA;B; ii and hA; (C;D; j); B; iithat compute the realizability of the corresponding path descriptions. Rememberthat M accepts, i� there exists an i (bounded by the running time of M) suchthat (S0; F0; i) is realizable, where S0 and F0 denote the uniquely determined initialand end con�guration. Consequently, the output gate of C will be an unboundedOR-gate with inputs hS0; F0; ii, where i runs through all even numbers bounded bythe running time ofM .It remains to be shown how gates named hA;B; ii or hA; (C;D; j); B; ii areconstructed. At this point, Lemma 10 comes into play. One simply has to translatethe sum symbols in Lemma 10 into (unbounded) OR-gates and the multiplicationsymbols into (bounded) AND-gates. For example,#(A;B; i) = Xi1;i2�i=2<j#(A; (C;D; j); B; i) �#(E;F; i1) �#(G;D; i2)results in the (sub)circuit of Figure 1. Gates hA;B; ii and hA;B; i; i1; i2; ji areconnected i� i1; i2 � i2 � j.The rightmost input of the AND-gate in Figure 1 computes whether the �rstcondition of the �rst case in Lemma 10 holds. Obviously this can be checked by a



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 19circuit of constant size because it only depends on the transition relation of M andconstant many bits of the input word. The second condition in Lemma 10, i.e.,i1; i2 � i=2 < j serves to restrict the inputs of the OR-gate to all those numberswhich are suitable candidates for a well-balanced decomposition of (A;B; i). Thetranslation of the equations for (A; (C;D; j); B; i) of Lemma 10 occurs in full analogyto the above. Clearly, gates like hA;B; 0i (resp. hA; (C;D; i); B; ii) have constantvalue 1, i� A = B (resp. (A;B) = (C;D)) holds and value 0, otherwise.Since the number of accepting subtrees of an OR-gate is the sum over the numberof accepting subtrees of its inputs and the number of the accepting subtrees of anAND-gate is the product over the number of accepting subtrees of its inputs, due toLemma 10 we immediately have the following: Each gate hA;B; ii of the constructedcircuit has as many accepting subtrees as paths of length i between A and B exist. Inparticular, the above described output gate exactly has as many accepting subtreesas M has accepting computations.The polynomial size of C directly follows from the polynomial number of surfacecon�gurations and the polynomial running time of M . The logarithmic depth is dueto the well-balanced decomposition of computation paths provided by Lemma 10(resp. Lemma 8 and 9) and logspace uniformity is a straightforward consequence ofthe simplicity of the construction.Next, a simulation of weakly and strongly unambiguous AuxPDAs by their circuitcounterparts is given. Both these inclusions are consequences of Lemma 11 and meanthe �rst step towards proving the equality of these classes.Lemma 12. (1) UnambAPDA1 �WeakUnambSAC1,(2) StUnambAPDA1 � UnambSAC1.Proof.(1) In De�nition 3 of WeakUnambSAC1-circuits it was explained that they areSAC1-circuits with at most one accepting subtree. A (weakly) unambiguousAuxPDA has at most one accepting computation and so the claim followsfrom Lemma 11.(2) Again we use the construction of Lemma 11. We just have additionally toshow that all OR-gates of the simulating circuit are vulnerable, i.e., thatall OR-gates of the circuit have at most one accepting subtree. The strongunambiguity of the simulated AuxPDA M means that there is at most onepath between two arbitrary con�gurations of M . This also implies that thereis at most one path with (�xed) gap between two con�gurations. Thus therealizability of all gates hA;B; ii and hA; (C;D; j); B; ii can be veri�ed in atmost one way, that is, the corresponding gates have at most one acceptingsubtree. The claim follows because these are the only OR-gates appearing inthe construction (except for the output gate).



Information and Computation, Vol. 118(2), pp. 227–245, 199520 ROLF NIEDERMEIER AND PETER ROSSMANITHThe second part of Lemma 12 can be generalized to ambiguity bounded AuxPDAs(De�nition 7). Here one demands that the number of paths between arbitrarycon�gurations is bounded by a value a(n). Analogously, ambiguity bounded,semi-unbounded fan-in circuits were de�ned by restricting the number of acceptingsubtrees for all gates of the circuit (De�nition 4). The following proposition is ageneralization of part two of Lemma 12.Proposition 13. Ambiguous-APDA1(a(n)) � Ambiguous-SAC1(a(n)2).Proof. The proof is similar to the proof of Lemma 12. The gates hA; (C;D; j); B; iichecking the realizability of paths of length j � i between A and B with a gapbetween C and D can have at most a(n)2 accepting subtrees. This is due to the factthat those gates actually check the existence of two paths in each case, that is theexistence of a path from A to C and one from D to B.According to the ambiguity bound of the simulated AuxPDA there may be atmost a(n) paths between A and C and between D and B each time, yielding amaximum of a(n)2 paths represented by (A; (C;D; j); B; i). Clearly, the number ofpaths represented by path descriptions (A;B; i) is bounded by a(n). Together witharguments used in the second part of the proof of Lemma 12 this results in an upperbound of a(n)2 for the ambiguity of all gates of the simulating circuit.Evidently, the claim of Proposition 13 still remains true if one takes the countingversions like in Lemma 11. That is, we also have #Ambiguous-APDA1(a(n)) �#Ambiguous-SAC1(a(n)2).4.3. Exact simulations of circuits by AuxPDAs. In contrast to the simulationof AuxPDAs by circuits, the simulation of circuits by AuxPDAs can be obtainedby slight modi�cations of techniques developed by Venkateswaran (1991). Thesesimulations will enable us to prove characterizations of unambiguous and countingversions of AuxPDAs by semi-unbounded fan-in circuits. Note that in the subsequentlemma (in contrast to Lemma 11 and 12) we have simulation results for arbitrarynatural powers k � 1.Lemma 14. (1) #SACk � #APDAk,(2) WeakUnambSACk � UnambAPDAk,(3) UnambSACk � StUnambAPDAk.Proof. The �rst two cases can be proved directly by the simulation method ofVenkateswaran (1991). In order to prove the more intricate third case it is necessaryto make an addition to this technique. In this case the push-down store is utilized toguarantee the strong unambiguity of the simulating AuxPDA.In the sequel, we give a concise presentation of Venkateswaran's method.Furthermore, in curly brackets we state the additions required for the proof of the



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 21third part. Let C be the given, logspace uniform, semi-unbounded fan-in circuit andlet M be the simulating AuxPDA. The simulation starts at the output gate of C.For an arbitrary gate g of C,M does the following:� If g is an OR-gate, f M pushes g marked as `done' on the push-down, gM guesses one predecessor h of g and checks recursively whether h has value 1.� If g is an AND-gate, M computes its (constant many) predecessors in a �xed(e.g. lexicographical) order, pushes all of them except the last one on thepush-down and recursively veri�es that the last gate has value 1.� If g is an input gate of C, then M rejects, if g has value 0. If g has value 1,M accepts, if the push-down is empty and, otherwise, M pops the topmostpush-down element and works on it.� f If g is a gate marked `done', then M pops the topmost gate from thepush-down and recursively works on it (i.e., g is ignored). gThe correctness of the above described simulation is proved as follows:(1),(2) For the �rst two cases it su�ces to show that #SACk � #APDAk holds,since WeakUnambSACk � UnambAPDAk is the special case where we onlyhave one accepting computation. The inclusion #SACk � #APDAk is easilyderived from the fact that the above described simulation just guesses theaccepting subtrees of the simulated circuit. Thus the simulating AuxPDA hasexactly as many accepting computations as accepting subtrees of the circuitexist. The time and space bounds are straightforward from the logspaceuniformity, the polynomial size and the polylogarithmic depth of the circuit(see (Venkateswaran, 1991)).(3) To prove UnambSACk � StUnambAPDAk we need the additions in curlybrackets. With them it is possible to show the existence of at most onecomputation path between two arbitrary con�gurations of the simulatingAuxPDA M . Observe that it is crucial here that the total contents of thepush-down store is part of a con�guration of M . Due to the additional`done'-gates we have a partial protocol of the guessed subtree on the store.The strong unambiguity ofM is proved by contradiction.Suppose that M is not strongly unambiguous. Then there must exist acon�guration K of M with two immediate successors K1 and K2 (K1 6= K2)such that K1 and K2 themselves have a common successor Kc. It is importantthat due to the de�nition of M , con�gurations K1 and K2 must di�er withrespect to their push-down contents. This results from the fact that the onlyplace in the described simulation where nondeterminism comes into play isthe point whereM guesses one input of an OR-gate. But this guessed input ispushed on the store and consequentlyK1 and K2 must di�er in such a guessedgate. So we can assume that K1 and K2 di�er in their topmost push-downsymbols, that is, in two di�erent input gates of an OR-gate. Let us call these



Information and Computation, Vol. 118(2), pp. 227–245, 199522 ROLF NIEDERMEIER AND PETER ROSSMANITHtwo gates g1 and g2. If K1 and K2 now have a common successor Kc, this inparticular means that g1 and g2 have to be popped from the push-down beforeM reaches Kc. Pursuant to the de�nition of M , gates marked `done' arepopped from the push-down only if they are the roots of accepting subtrees(i.e., g1 and g2 evaluate to 1). But this is a contradiction to the preconditionthat all gates of the simulated circuit have at most one accepting subtree.Most of the results up to now can be summarized in the following theorem.Recently, Vinay (1991) independently proved the �rst case by quite di�erentmethods.Theorem 15. (1) #SAC1 = #APDA1,(2) WeakUnambSAC1 = UnambAPDA1,(3) UnambSAC1 = StUnambAPDA1.Proof. Simply combine Lemma 11 (resp. Lemma 12) and Lemma 14.4.4. The recognition of unambiguous CFLs. Finally, we prove the inclusionof the closure of unambiguous context-free languages under log-space many-onereductions in UnambSAC1. This result has some important consequences. First,it extends Rytter's inclusion LOGUCFL � CREW1 (Rytter, 1987). Note thatLange (1993) characterized CREW1 by UnambAC1, a presumably stronger circuitclass than UnambSAC1. In Rytter's algorithm \non-monotone" write accesses werea crucial part of the algorithm. Theorem 15 immediately implies a monotoneCREW algorithm, since UnambSAC1-circuits can be simulated by CREW-PRAMsin a monotone way. Second, Theorem 15 also helps to shed some more light onthe question whether LOGUCFL = UnambAPDA1. As can be seen in Section 5,UnambSAC1 and its complement are included in UnambAPDA1. The above equalitywould imply the closure under complementation of LOGUCFL. Since the latter seemsto be unlikely, we conjecture the strict inclusion of LOGUCFL in UnambAPDA1.Theorem 16. LOGUCFL � UnambSAC1.Proof. Due to Theorem 15 it is su�cient to prove LOGUCFL � StUnambAPDA1.Moreover, because StUnambAPDA1 clearly is closed under (deterministic) logspacemany-one reductions, it su�ces to show UCFL � StUnambAPDA1.Let G = (N;T; P; S) be an unambiguous context-free grammar in Chomskynormal form, that is, there are only productions of the form A ! BC or A! a,where A;B;C 2 N (set of nonterminals) and a 2 T (set of terminals). W.l.o.g.assume every nonterminal to be both reachable and productive. Let w 2 T � be anarbitrary, but �xed input of length n, i.e., w = a1a2 : : : an for ai 2 T , 1 � i � n. For0 � i � j � n we set iwj := ai+1 : : : aj. Thus we have iwi = " and 0wn = w.



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 23The AuxPDA M accepting L(G) works as follows. M starts with the tripleh1; n; Si on the working tape. For an arbitrary triple hi; j; Ai with i � j;A 2 N , Mguesses a production A! �, � 2 N2 [ T and then proceeds as follows:� If � = BC, then M pushes hA! BCi on the store and guesses a number kwith i � k � j, pushes hk; j; Ci on the store and recursively works on thetriple hi; k;Bi.� If � = a, then M rejects if iwj 6= a (especially j = i+ 1 must hold), accepts ifthe push-down is empty and recursively checks the next topmost push-downcontents, otherwise.� If M pops a push-down contents of shape hD ! EF i, then M simply checksthe rest of the push-down store (i.e., \ignores" hD ! EF i).The push-down contents representing productions with right-hand side consisting ofnonterminals (hD ! EF i) serves for guaranteeing the strong unambiguity of M . Asin Lemma 14 it is easily seen that there is only one place where nondeterminismoccurs. Here it is the point where we guess a production with a given nonterminal onthe left side.Suppose that there is a con�guration K of M with two immediate, di�erentsuccessors K1 and K2, such that K1 and K2 have a common successor Kc. This leadsto a contradiction to the unambiguity of the given grammar G. With argumentsanalogous to Lemma 14 it is easy to see that K1 and K2 must di�er in thetopmost push-down symbol. There are two cases to distinguish. Either the topmostpush-down contents represents (two di�erent) guessed productions A! B1C1 (resp.A ! B2C2) or we have for some production A ! BC two di�erent guesses k1and k2 for the value of k, thus yielding hi; k1; Bi and hk1; j; Ci or hi; k2; Bi andhk2; j; Ci. Since the handling of the second case is similar to the �rst one, we onlydescribe the �rst one. In the �rst case, clearly, both productions must be poppedfrom the push-down before M reaches Kc. According to the de�nition of M ,these productions are only popped if A �) iwj. Because each nonterminal of G isproductive and reachable, there must exist v1; v2 2 T � such that v1iwjv2 is derivedas S �) v1Av2 ) v1B1C1v2 �) v1iwjv2 on the one hand and, on the other hand,derived as S �) v1Av2 ) v1B2C2v2 �) v1iwjv2. This means that we have two di�erentderivation trees for v1iwjv2, thus contradicting the unambiguity of G.5. Inductive counting on semi-unbounded fan-in circuitsThe inductive counting technique of Immerman (1988) and Szelepcs�enyi (1988) ledto one of the most outstanding results in structural complexity theory of the lastyears: Nondeterministic space is closed under complementation. Soon this methodwas employed to prove several important results (e.g. (Borodin et al., 1989; Buntrocket al., 1993)). Here we will open a further �eld of application for this techniqueby translating the methods of Buntrock et al. (1993) into leveled, semi-unbounded



Information and Computation, Vol. 118(2), pp. 227–245, 199524 ROLF NIEDERMEIER AND PETER ROSSMANITHcircuits: inductive counting on leveled, semi-unbounded fan-in circuits. Observe thatfor most of the circuit classes it is no restriction to demand them to be leveled (seeSections 2 and 3). This new variation of inductive counting can always be appliedwhen we have characterizations of AuxPDAs by circuits. We obtain several results:As a �rst example, we give a new proof for the closure under complementation ofSACk (Borodin et al., 1989). Second, this method enables us to improve the mainresult of Buntrock et al. (1993). Polynomially ambiguity bounded AuxPDAs can besimulated by unambiguous ones without time or space penalty. Third, inductivecounting applies for proving the inclusion UnambSEACk � UnambAPDAk, an openquestion considered to be at least di�cult by Lange (1993). Finally, careful analysisof a proof of Borodin et al. (1989) reveals the closure under complementation of theunambiguous circuit class UnambSEACk.5.1. The basic inductive counting lemma and a �rst application. Beforepresenting the inductive counting method for leveled circuits, we have to point outwhat we will count in circuits. Therefore, the notion of unit of measurement (measurefor short) for gates is introduced. A measure value m (m-value for short) of a gate gin circuit C with �xed input w 2 f0; 1gn is a natural number which only depends onthe type of g and the measure values of the inputs of g. Herein, input gates of C willalways have value 0 or 1 (corresponding to their Boolean value). In addition, the(measure) value of g must be computable in an easy way (preferably with logarithmicspace) by an associative and commutative operation (essentially, we only use additionor multiplication). For example, the simple Boolean value of gates on given inputscan be interpreted as a measure. The central lemma of this subsection, whichpresents the technique of inductive counting on leveled circuits, can now be stated.Lemma 17. Let C be a logspace uniform, leveled circuit of size z(n) � n with �xedinput word w 2 f0; 1gn. Furthermore, let m be a measure such that for all gates of Cthe m-value is bounded by a(n) and suppose that there exists an AuxPDA algorithmverifying for an arbitrary gate g of C in time t(n) and space s(n) that g has anm-value at least as big as a given number.Then the m-value of the output gate of C can be ascertained by anondeterministic AuxPDA with time z(n)O(1) + (log a(n) + t(n))z(n)2 and spacemax(log a(n) + log z(n); s(n)).Proof. The key idea of the proof is as follows: Starting with the level of the inputgates, the simulating nondeterministic AuxPDA M �nds out level by level for allgates of a considered depth their value according to the measure m. In this way, them-value of the output gate of C will �nally be ascertained.The details are as follows. Let Si denote the sum over the m-values of all gatesat level i (i.e., depth i). Obviously, S0 is known (resp. easy to compute) because inlevel 0 we only have the input gates of C (with �xed Boolean values). Now leti > 0 and suppose that Si�1 is known. In order to ascertain Si, M has to �nd out



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 25all m-values of gates at level i. To determine the m-value of one gate at level i, Mprocedes in the following way: For each gate gi�1 in depth i � 1, M guesses itsm-value v, veri�es with the (according to the precondition) given algorithm that gi�1has an m-value at least as big as v, and increases a counter variable Z (which isinitialized with zero) by v. If gi�1 is an input to gi (recall that, all inputs of gi lie atlevel i� 1), the m-value of gi�1 serves in a straightforward manner to compute them-value of gi. Here we make use of the fact that due to the required associativity andcommutativity of the operation for computing m-values, M can always do a partialcomputation for the m-value of gi in one variable. When M has gone through allgates in level i � 1, it compares the counter variable Z with the already knownsum Si�1. If Z is less than Si�1, then there must exist a gate at level i� 1 for whichM has guessed a too smallm-value and consequentlyM rejects. If Z is equal to Si�1(Z greater than Si�1 is impossible),M must have guessed the m-values for all gatesin level i � 1 in the right way and, therefore, the m-value of gi has been computedcorrectly. Repeating this procedure for all gates at level i, M �nds out the value ofthe sum Si. In particular,M �nally gets the m-value of the output gate of C.Because of the assumptions made and especially the logspace uniformity of C(which inter alia is extensively used above to �nd out all gates at a certain level),the claimed time and space bounds for M can be veri�ed easily. We need timez(n)O(1) + (log a(n) + t(n))z(n)2 due to the requirements of the uniformity machine,the necessity of summing up ambiguity values, and the veri�cation of guessedambiguity values, respectively. The space bound max(log a(n) + log z(n); s(n))derives from analogous considerations and the proof is completed.A �rst simple application of Lemma 17 provides a new proof for the closureunder complementation of SACk (Borodin et al., 1989), which in particular impliesthe closure under complementation of LOGCFL (Sudborough, 1978; Venkateswaran,1991).Corollary 18. (Borodin et al., 1989) SACk = Co-SACk.Proof. W.l.o.g. let the given SACk-circuit C be leveled. We just use the trivialmeasure described in the beginning, that is the Boolean values of the gates. Theveri�cation algorithm needed for Lemma 17 is obtained from Venkateswaran'sequality SACk = NAPDAk (Venkateswaran, 1991). An application of Lemma 17 thenyields the desired result, if we de�ne the simulating AuxPDA to accept i� the outputgate of C has value 0. Note that in this way we have proved Co-SACk � NAPDAkand NAPDAk = SACk provides the claim.5.2. Simulating ambiguity bounded AuxPDAs by unambiguous ones. Inthe proof of Lemma 17 it can be observed that the simulating AuxPDA does notreject, only if the exact measure values (m-values) of all gates of the given circuitare guessed correctly. Since there is only one possibility to make only correct



Information and Computation, Vol. 118(2), pp. 227–245, 199526 ROLF NIEDERMEIER AND PETER ROSSMANITHguesses, this implies that, if one has an algorithm for AuxPDAs verifying correctlyguessed m-values in an unambiguous way, the total simulation of Lemma 17 will beunambiguous. In order to get an unambiguous, verifying AuxPDA, it is necessaryto �nd a gate measure which allows a veri�cation of correctly guessed m-values inexactly one way. Subsequently, for two purposes we will present adequate measureswhich enable unambiguous veri�cations. In this way, eventually unambiguoussimulations of ambiguity bounded circuits (and, thus due to Proposition 13, ofambiguity bounded AuxPDAs) and UnambSEACk-circuits are obtained.Let us begin by restating the notion of ambiguity bounded gates. In Section 3 wesaid that a gate is a(n) ambiguity bounded if it has at most a(n) accepting subtrees.Furthermore, in Section 4 we already mentioned that the ambiguity value of anAND-gate can be computed by multiplying the ambiguity values of its inputs andthe ambiguity value of an OR-gate is the sum over the ambiguity values of its inputs.Clearly, the ambiguity value of an input gate simply corresponds to its Booleanvalue. Having these facts in mind, we are able to prove one of the main results of thispaper: Polynomial ambiguity bounded AuxPDAs can be simulated by unambiguousones without time and space penalty.Theorem 19. (1) Ambiguous-SAC1(nO(1)) � UnambAPDA1,(2) Ambiguous-APDA1(nO(1)) � UnambAPDA1.Proof.(1) According to the above explanations it su�ces to show that for each gate g ofthe given circuit C a correctly guessed ambiguity value for g can be veri�edunambiguously. If this can be done by an AuxPDA in polynomial time andlogarithmic space, the claim follows with the help of Lemma 17, since w.l.o.g.C can be assumed as leveled. The AuxPDA M veri�es a guessed ambiguityvalue a for a gate g in the following manner:� If g is an OR-gate, M ascertains in some �xed (e.g. lexicographical)order all input gates of g and guesses for all of them a correspondingambiguity value such that the sum of these equals a. ThenM recursivelyveri�es the ambiguity values of the input gates di�erent from zero.� If g is an AND-gate, M ascertains in some �xed order the (constantmany) input gates of g and guesses for all of them a correspondingambiguity value such that the product of these equals a. Then Mrecursively veri�es the nonzero ambiguity values of the input gates.� If g is an input gate,M rejects, if g = 0 and a � 1, or if g = 1 and a > 1.If the push-down store is empty and g = 1 and a = 1, then M accepts.OtherwiseM recursively works on the topmost push-down contents.The logarithmic space bound is straightforward and with little e�ort apolynomial running time can be proved forM . Furthermore, the unambiguityof M for correctly guessed ambiguity values a is a direct consequence of the



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 27fact that in this case M always has exactly one possibility to guess correctlythe ambiguity values of the input gates each time. Note that if a is guessed toosmall,M has more than one possibility to do the veri�cation and, because ofthat, no longer works unambiguously. But recall that in this case the AuxPDAof Lemma 17 will �nally reject, since then Z = Si�1 does not hold. Usingthe above described unambiguous AuxPDA M for the veri�cation algorithm,application of Lemma 17 now provides the desired result: The AuxPDAsimulating the ambiguity bounded circuit C ascertains the ambiguity value ofthe output gate of C and accepts, i� it is greater than 0.(2) Proposition 13 yields Ambiguous-APDA1(nO(1)) � Ambiguous-SAC1(nO(1))and thus the second part of Theorem 19 follows by application of part one.Note that the inclusionNSPACE-AMBIGUITY(log n; nO(1)) � UnambAPDA1 (�)was in particular proved in (Buntrock et al., 1993), restricting the unambiguity onlybetween reachable con�gurations. Theorem 19 is one possible improvement over (*).Buntrock, Jenner, Lange, and Rossmanith (1991) improved the upper bound of (*):NSPACE-AMBIGUITY(log n; nO(1)) � DAPDA1.The simulating AuxPDA of Theorem 19 computes the number of acceptingsubtrees of the output gate of the simulated circuit. This means that it can computethe function mapping input words to the number of accepting subtrees (resp.accepting computations (Proposition 13)). So we even have the following result:Corollary 20. (1) #Ambiguous-SAC1(nO(1)) � FUnambAPDA1,(2) #Ambiguous-APDA1(nO(1)) � FUnambAPDA1.One application of Theorem 19 is that CFLs generated by grammars whichpossess at most a polynomial number of derivation trees for arbitrary words can berecognized by unambiguous AuxPDAs.Corollary 21. The word problem of polynomially ambiguous CFLs is contained inUnambAPDA1.Proof. In Theorem 16 the inclusion UCFL � UnambSAC1 (respectively UCFL �StUnambAPDA1 (and therefore, LOGUCFL � StUnambAPDA1)) was proven. Itcan be observed that this construction also serves for showing the inclusionof polynomially ambiguous CFLs in Ambiguous-APDA(nO(1)). Assuming thecorrectness of the latter, the claim follows by application of Proposition 13 andTheorem 19. Let us shortly indicate the correctness of the stated inclusion. For therecognition of polynomially ambiguous CFLs we use exactly the same AuxPDAM aswe did for the recognition of unambiguous CFLs in Theorem 16. To show that theambiguity of M now remains polynomially bounded is again done by contradiction:



Information and Computation, Vol. 118(2), pp. 227–245, 199528 ROLF NIEDERMEIER AND PETER ROSSMANITHSuppose that there are more than p(n) paths between two con�gurations K1 and K2of M , where p is a polynomial that bounds the number of derivation trees. In away similar to Theorem 16 it follows that for all paths from K1 to K2 there mustbe one terminal string v, which is recognized during the transitions from K1 to K2.Making again use of the assumption that all nonterminals of the underlying grammarare both productive and reachable, it can be concluded in a way analogous toTheorem 16 that there must exist more than p(n) derivation trees for some terminalstring generated by the grammar. This contradicts the assumption and the claimfollows.From Theorem 16 and (Lange, 1993) we have that unambiguous CFLs can berecognized by CREW-PRAMs with a polynomial number of processors in logarithmictime. This result was already given by Rytter (1987), showing that more precisely n7processors su�ce. Meanwhile, Rossmanith and Rytter (1992) reduced the number ofprocessors to n6 and proved that even �nitely ambiguous CFLs can be recognized bythis PRAM-class.If one improved Corollary 21 by showing that polynomial ambiguous CFLsare included in StUnambAPDA1, then together with Theorem 15 it would followthat even polynomially ambiguous CFLs can be recognized by CREW-PRAMs inlogarithmic time with a polynomial number of processors. At least Corollary 21implies that polynomially ambiguous CFLs can be recognized by robust PRAMs(Hagerup and Radzig, 1990) within the same complexity bounds. This isa straightforward consequence of the characterization of UnambAPDA1 byWeakUnambSAC1-circuits given in Theorem 15. One just has to simulate theseweakly unambiguous circuits by the robust PRAM in the usual way (see, for example,(Lange, 1993)).5.3. Further applications and results. A second application of Lemma 17allows us to show UnambSEACk � UnambAPDAk for k � 1. In this way we getthe �rst nontrivial upper bound for UnambSEAC-circuits demanded in (Lange,1993). Lemma 17 itself will serve to prove UnambSEAC1 � UnambAPDA1. BecauseUnambSEAC1-circuits can have a super-polynomial ambiguity, it is necessary tointroduce a new measure for gates in order to obey a logarithmic space bound (cf.Lemma 17). For this we make use of the so-called saturation of gates.A gate is considered as saturated, if it is an input gate with value 1 or if it is anOR-gate with at least two inputs with value 1. The following de�nition generalizesthis concept by making the saturation of a gate dependent on the saturation of itsinputs. Let C be an UnambSEAC-circuit and g be any gate in C. Then the saturationof g is de�ned as follows.� If g is an input gate of C, then it has saturation 1, if g = 1 and saturation 0,otherwise.



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 29� If g = AND(g1; g2), then its saturation is the sum of the saturations of g1 andg2, if both these saturations are greater than 0 and the saturation of g is 0,otherwise.� If g is an OR-gate (of arbitrary fan-in), then we have to consider two cases. Ifg evaluates to 0, then its saturation is de�ned to be 0. If g has exactly oneinput with saturation greater than 0 (i.e., g has at most one input whichevaluates to 1), then the saturation of g is de�ned as the saturation of the gateat this input. Otherwise, if g has two 1-inputs, then g is a bounded OR-gateand the saturation of g is the sum over the saturations of all the inputs of gplus 1 (because g itself is a saturated OR-gate).Note that the output gate of circuit C on input x has saturation greater than 0, i�C accepts x. Obviously, the saturation is polynomially bounded for all the gates ofUnambSEAC1-circuits. The essential request behind this de�nition again is to be ableto supply an AuxPDA verifying correctly guessed saturation values unambiguously.Lemma 22. UnambSEAC1 � UnambAPDA1.Proof. W.l.o.g. we assume the given UnambSEAC1-circuit C to be leveled. It su�cesfor applying Lemma 17 to show that a correctly guessed saturation value of a gatecan be veri�ed in polynomial time and within logarithmic space by an unambiguousAuxPDA, because the saturation measure is polynomially bounded for all gates ofUnambSEAC1-circuits. The veri�cation algorithm exactly follows the de�nition ofsaturation and the proof is done analogously to Theorem 19, where the veri�cationalgorithm followed the de�nition of ambiguity for gates. Clearly, the (unambiguous)AuxPDA resulting from Lemma 17 accepts i� the output gate of C has saturationgreater than 0.Lemma 22 serves as the fundamental ingredient for the proof of the generalizedresult:Theorem 23. UnambSEACk � UnambAPDAk for k � 1.Proof. A leveled circuit of depth O(logk n) can be regarded as a circuit ofO(logk�1 n) circuit layers, each of depth log n (i.e., each of these circuit layers isan UnambSEAC1-circuit). The separation into di�erent layers can be done easilybecause of the w.l.o.g. assumed leveled-ness and logspace uniformity of the simulatedcircuit. The essential trick is that we now do a simulation for each of these layerssimilar to that of Lemma 22. Here the problem arises that, when simulatingsuch an UnambSEAC1-circuit layer by an AuxPDA M , in general we do not haveautomatically the values of the input gates at disposal. Therefore, M recursivelycomputes those values each time they are needed. (Note that the simulation starts inthe highest (that is, output-) UnambSEAC1-layer of the given circuit.)



Information and Computation, Vol. 118(2), pp. 227–245, 199530 ROLF NIEDERMEIER AND PETER ROSSMANITHObserve that at a transition from one circuit layer to another in some respect weforget information. That is, to compute the value of an input gate g of some circuitlayer i, a (re)computation which actually provides the saturation of g is performed.But then M is only interested in whether g has saturation greater than 0 (i.e., g hasvalue 1) or g has saturation 0 (i.e., g has value 0). It is necessary to \forget" theactual value at this point because, otherwise, the saturation values were no longerpolynomially bounded.Nevertheless, the whole simulation obviously remains unambiguous. Thelogarithmic space bound and the correctness of the simulation are straightforwardand such what remains to be shown is the time bound 2O(logk n) (= nO(logk�1 n)): Foreach UnambSEAC1-circuit layer only polynomially many recursive calls are performedby M due to the polynomial time bound of the simulation of UnambSEAC1-circuitsof Lemma 22. Observe that in polynomial time at most a polynomial number ofquestions to the input bits of the circuit take place whose determination leads to therecursive calls. Thus, the recursion depth of O(logk�1 n) yields a total running timeof nO(logk�1 n).We separated an UnambSEACk-circuit in layers of depth O(log n). This is the onlypossibility we had, because, if the layers were chosen \thicker" than O(log n), thenthe space needed by the simulating AuxPDAM would become greater than O(log n)and if the layers were chosen \thinner" than O(log n), then the simulation timewould become greater than 2O(logk n): Assume that we separate C in circuit layers ofarbitrary depth D. Let T (D) (resp. S(D)) denote the time (resp. space) that areneeded for the simulation of such a circuit layer with the help of the techniquesof Lemma 22. Then T (D) = max(2O(D); nO(1)) and S(D) = max(O(D); O(log n)).(Observe that for D > 0 we have to assume a polynomial size for each of those circuitlayers.) Evidently, D = O(log n) is optimal to gain a simulation in polynomial timeand logarithmic space. For the running time t(n) of the whole simulation analogousto Theorem 23 it holdst(n) = T (D)logk n=D � nO(logk n=D) = 2O(logk+1 n=D):Consequently, if D = o(log n), then t(n) = !(2O(logk n)).In the end of this section, the closure under complementation for stronglyunambiguous, semi-unbounded fan-in circuits is investigated. Whereas there islittle hope to prove the closure under complementation for UnambSACk, theconstruction of Borodin et al. (1989) for complementing circuits fully applies toUnambSEACk. Since this construction does not work for UnambSACk, we takea di�erent approach via Lemma 17. By a slight modi�cation of Lemma 17 itis possible to show that Co-UnambSAC1 is included in ReachUnambAPDA1 (see(Buntrock et al., 1991)), the class of languages recognized by polynomial time andlogarithmic space bounded AuxPDAs, where each con�guration is reachable from



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 31the start con�guration by at most one computation path. Of course, by de�nitionit holds StUnambAPDA1 � ReachUnambAPDA1 � UnambAPDA1. Recall that inTheorem 15 it was proved that UnambSAC1 and StUnambAPDA1 coincide, so thefollowing theorem could also be stated for strongly unambiguous AuxPDAs insteadof UnambSAC1-circuits.Theorem 24. Co-UnambSAC1 � ReachUnambAPDA1.Proof. Let C be the given UnambSAC1-circuit, which w.l.o.g. is assumed to beleveled. As mentioned before, a slightly modi�ed version of Lemma 17 is applied.The gate measure will be the simple Boolean values of the (evaluated) gates. Onlyone addition to the algorithm of Lemma 17 is made. After nondeterministicallyguessing a gate value, the simulating AuxPDA additionally pushes this guessedvalue (0 or 1) on the push-down store. Clearly, guessed values are veri�ed with thestrongly unambiguous AuxPDA from the equality UnambSAC1 = StUnambAPDA1(Theorem 15). Similar to Theorem 16 the idea behind this pushing of additionalinformation (i.e., guessed values) on the store is to record paths of guessesin order to guarantee the unique reachability of con�gurations (from the startcon�guration). In these paths of guesses the history of nondeterministic decisionsof the simulating AuxPDA M (except for the strongly unambiguous verifyingalgorithm) is protogeniced. These paths of guesses only are popped from thepush-down, when M has found out the value of the output gate g of C. (M �nallyaccepts, i� g evaluates to 0.) This is due to the fact that in Lemma 17 the push-downstore is only needed for the veri�cation of guessed values. Since the con�gurationwhere M has ascertained the value of g is reachable by exactly one computationpath (with an uniquely determined, corresponding path of guesses), we can easilyconclude that all con�gurations ofM are reachable by at most one computation pathfrom the start con�guration. Thus application of such modi�ed Lemma 17 yields thestatement of Theorem 24.Perhaps one could be tempted to assume that the above simulation (`modi�edLemma 17') can even be done in a strongly unambiguous manner (and we canconclude UnambSAC1 = Co-UnambSAC1). But simple considerations show that thisis not true because for (unreachable) con�gurations where normally by inductivecounting ascertained numbers are pretended wrongly there can be several waysleading to the accepting con�guration.In contrast to UnambSACk, whose closure under complementation seems to beunlikely, UnambSEACk is closed under complementation.Theorem 25. UnambSEACk = Co-UnambSEACk for k � 1.Proof. It can be observed that the construction of Borodin et al. (1989) forcomplementing SACk-circuits directly transfers to UnambSEACk-circuits. Theessential point is that all unbounded OR-gates in the construction for the



Information and Computation, Vol. 118(2), pp. 227–245, 199532 ROLF NIEDERMEIER AND PETER ROSSMANITHcomplementing circuit of Borodin et al. (1989) can be replaced by vulnerableunbounded OR-gates, i.e., all of them have at most one input evaluating toone. Moreover, the so-called THRESHOLD-gates additionally needed there can bereplaced by monotone NC1-circuits (Ajtai et al., 1983; Borodin et al., 1989), thusunbounded OR-gates are not necessary in this case.6. Normal forms for AuxPDAsIn this section, we will utilize the characterizations of AuxPDAs by semi-unboundedfan-in circuits to prove some normal form results. First, we deal with the restrictionof push-down heights in particular for unambiguous AuxPDAs and, second, weintroduce the notion `oblivious' for AuxPDAs and show that in the most interestingcases it is no restriction to demand obliviousness. In addition, oblivious andunambiguous AuxPDA classes will prove to coincide with WeakUnambSACk andUnambSACk for arbitrary k. In this way, we extend the results of Section 4, whereonly a characterization for k = 1 was given.6.1. AuxPDAs with restricted push-down height. For Turing machines thereis great interest in simultaneous resource bounds, i.e., restricting time and spacebounds at the same time. As far as AuxPDAs are concerned, one most of thetime deals with simultaneous bounds on running-time and working space. But whatabout the unlimited push-down store? There has also been a lot of research torestrict the size of the push-down store. Mager (1969) showed that a push-downstore su�ces whose size is exponential in the space bound. Harju (1979) showed(also see (Ruzzo, 1980) for an alternative proof) that deterministic AuxPDAswith polynomial running-time and logarithmic working-tape can be simulated bydeterministic AuxPDAs with logarithmic space and O(log2 n) push-down height.However, the simulation yields a super-polynomial running-time. But later on,Dymond and Ruzzo (1986) proved the above result where even the polynomialrunning-time can be preserved. The dual result for nondeterministic AuxPDAs (withalso preservation of the polynomial running-time) was shown earlier by Ruzzo (1980).Subsequently, we will restrict push-down height for nondeterministic, unambiguous,and strongly unambiguous AuxPDAs. For this purpose, we make use of thecharacterization of AuxPDAs by semi-unbounded fan-in circuits. This is done in thefollowing way. Assume that we have a semi-unbounded fan-in circuit C of depth d(n)and size z(n) simulating an AuxPDAM . Then we again simulate C by an AuxPDAN in the usual way (cf. (Venkateswaran, 1991)): Starting at the output gate, forAND-gates we examine both children and for OR-gates only one guessed child.Because we only need to store constant many parameters (with a space requirementof O(log z(n))) of the recursive calls, a push-down height of O(d(n) � log z(n)) isimmediate. Furthermore,N has the same time and space complexity asM . Our �rst



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 33application of the described technique yields an alternative proof for a result due toRuzzo (1980).Theorem 26. (Ruzzo, 1980) A language L is accepted by a NAuxPDA in log n spaceand 2O(logk n) time i� L is accepted by such a machine which, furthermore, uses atmost O(logk+1 n) push-down height.Proof. Just make use of the technique described above, using Venkateswaran'sequality SACk = NAPDAk.Making use of two of the main results of this paper, we further gain the proposedrestriction of the push-down heights for unambiguous and strongly unambiguousAuxPDAs. Unfortunately, we have such a result only for polynomial time AuxPDAs.Note that in the case of unambiguous AuxPDA's the result of Theorem 27 alreadywas obtained by Buntrock (1989).Theorem 27. L is accepted by an unambiguous (resp. strongly unambiguous)AuxPDA in log n space and polynomial time i� L is accepted by such a machine which,furthermore, uses at most O(log2 n) push-down height.Proof. It is su�cient to utilize the equality WeakUnambSAC1 = UnambAPDA1(resp. UnambSAC1 = StUnambAPDA1) given in Theorem 15 in combination withthe above described technique.6.2. Obliviousness for AuxPDAs. An automaton is called oblivious if themovements of all its heads are independent from the input except its length. Thisproperty is easily achieved for space bounded Turing machines: Roughly speaking, wejust always move the heads to and from the two ends of the respective tape contents.For AuxPDAs obliviousness is not so easy to attain because of the push-down storehead. But here the characterization of AuxPDAs by circuits applies. The main ideaagain is to simulate a circuit by an AuxPDA. If the circuit is strictly alternating (i.e.,for all i � 0, all gates on level 2i + 1 are OR-gates and all gates on level 2i + 2 areAND-gates) and leveled, then the pro�le will also be very regular. This special shapeof a pro�le is called W-cyclez (cf. Figure 2). Because we only consider logspace andat least polynomial time AuxPDAs, for the input and working tapes of the AuxPDAswe can use the above mentioned technique for space bounded Turing machines and,therefore, we altogether get an oblivious AuxPDA.To simulate a circuit C (which itself simulates a given AuxPDA M), we employnearly the same technique as in the preceding subsection. The only di�erence is thatwhen we evaluate an AND-gate g (which w.l.o.g. shall have exactly two inputs), wedo this in a slightly modi�ed way. First, we push the left input gate of g on thestore, then we evaluate it, afterwards we pop it from the store, and, �nally, wezThis name is taken from numerical mathematics, where it is used in the theory of multi-gridmethods.



Information and Computation, Vol. 118(2), pp. 227–245, 199534 ROLF NIEDERMEIER AND PETER ROSSMANITHFigure 2. W-cycles.compute the right input gate of g and do the analogous computation for this rightgate. Note that we only need the store for the evaluation of AND-gates. Becauseof the `symmetry' of both the sub-circuits of the AND-gate this altogether yields apro�le in which the following holds. If we divide it into two equal parts (left andright) both are symmetric to each other and this also holds for a recursive division ofthese parts. In this way, we gain pro�les in W-cycle form (Figure 2), i.e., a specialcase of obliviousness. The following classes with pre�x `W-cycle' are de�ned in theintuitive way.Theorem 28. (1) NAPDAk = (W-cycle)NAPDAk.(2) UnambAPDA1 = (W-cycle)UnambAPDA1.(3) StUnambAPDA1 = (W-cycle)StUnambAPDA1.Proof. To prove Theorem 28 we make use of the equations NAPDAk = SACk(Venkateswaran, 1991), UnambAPDA1 = WeakUnambSAC1, and UnambSAC1 =StUnambAPDA1 (Theorem 15). According to Proposition 1 and subsequent remarkscircuits of all these classes can be assumed to be leveled. Furthermore, it only needslittle e�ort to see that all circuits of these classes can be made strictly alternatingby at most doubling the depth. Now the simulation technique described aboveTheorem 28 provides the desired result.The question whether UnambAPDAk = WeakUnambSACk and StUnambAPDAk =UnambSACk hold for k > 1, remained open in Section 4. We cannot fully answer thisquestion, but if we con�ne the consideration to W-cycle-oblivious AuxPDA classes,we get the desired equality for arbitrary k.Theorem 29. (1) (W-cycle)UnambAPDAk = WeakUnambSACk.(2) (W-cycle)StUnambAPDAk = UnambSACk.Proof. The `�'-directions only require a straightforward generalization of the proof ofTheorem 28, where essentially WeakUnambSAC1 � (W-cycle)UnambAPDA1 (resp.UnambSAC1 � (W-cycle)StUnambAPDA1) was shown, to arbitrary k � 1.To prove the reverse direction, we make use of the `totally symmetric' shapeof the pro�les for W-cycle-oblivious AuxPDAs. The essential advantage of theseW-cycle-oblivious AuxPDAs is that we always can separate a pro�le into two equalsized paths. Thus it is not necessary to store information about the length of thecomputation paths in order to get a balanced and unique decomposition of pro�les(and thus, computation paths). We consider pairs of surface con�gurations in order



Information and Computation, Vol. 118(2), pp. 227–245, 1995UNAMBIGUOUS AUXPDAS AND CIRCUITS 35BGE FDCAFigure 3. Decomposition components of a W-cycle pro�le.to construct the simulating circuit. Mainly we need gates named hA;Bi that computewhether there exists a computation from surface con�guration A to B, where thelevel of the push-down store is the same for A and B and does not go below this levelduring the computation (cf. Figure 3). These gates are de�ned ashA;Bi � 9C;::: ;GhC;Di ^ hF;Gi ^ hA!C;D!Ei ^ hE!F;G!Bi;where, for example, hA ! C;D ! Ei computes whether there is one push-stepfrom A to C and one pop-step from D to E (where �rst a symbol a is pushedand then popped). Of course, hA;Ai has value 1 for every surface con�guration A.The output gate of the simulating circuit then is hS;F i, where S (resp. F ) arethe uniquely de�ned start (resp. accepting end) (surface) con�gurations (both withempty push-down store) of the simulated AuxPDA.The correctness and the weak (resp. strong) unambiguity of such de�ned circuitsis shown similar as in the proofs of Lemma 11 and 12, respectively. Because thereare only polynomially many surface con�gurations and we recursively divide pro�lesinto two equal sized paths, a polynomial size and a depth of O(logk n) of the circuitsu�ce. 7. Conclusion and open questionsIn summary, we feel that we have shed some more light on the concept ofunambiguity in the realm of NC. We hope that the results of this paper clari�edrelations between AuxPDAs and semi-unbounded fan-in circuits. Furthermore,it should have become apparent how useful characterizations of AuxPDAs bysemi-unbounded fan-in circuits are in order to employ inductive counting methods orto gain normal form results. We have come to the conclusion that strong unambiguityseems to be a concept more suitable for the consideration of classes within theNC-hierarchy than (the conventional) weak unambiguity is. This impression derivesfrom the facts that CREW-PRAMs are characterized by a strongly unambiguouscircuit class (Lange, 1993) as well as LOGUCFL shows tight relations to stronglyunambiguous circuits and AuxPDAs. The usefulness of strong unambiguity andrelated concepts can informally be explained if one thinks of simulations ofsuch restricted automata. A simulation `in parallel' often deals with the whole
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