
Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

A General Data Reduction Scheme for

Domination in Graphs?

Jochen Alber1, Britta Dorn2, and Rolf Niedermeier3

1 DIgSILENT GmbH, Power System Applications & Consulting,
Heinrich-Hertz-Str. 9, D-72810 Gomaringen, Germany. j.alber@digsilent.de

2 Mathematisches Institut, Universität Tübingen,
Auf der Morgenstelle 10, D-72076 Tübingen, Germany. brdo@fa.uni-tuebingen.de

3 Institut für Informatik, Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2, D-07743 Jena, Germany. niedermr@minet.uni-jena.de

Abstract. Data reduction by polynomial-time preprocessing is a core
concept of (parameterized) complexity analysis in solving NP-hard prob-
lems. Its practical usefulness is confirmed by experimental work. Here,
generalizing and extending previous work, we present a set of data reduc-
tion preprocessing rules on the way to compute optimal dominating sets
in graphs. In this way, we arrive at the novel notion of “data reduction
schemes.” In addition, we obtain data reduction results for domination
in directed graphs that allow to prove a linear-size problem kernel for
Directed Dominating Set in planar graphs.

1 Introduction

Data reduction and kernelization rules are one of the primary outcomes of re-
search on parameterized complexity: Attacking computationally hard problems,
it always makes sense to simplify and reduce the input instance by efficient pre-
processing. In this work, considering the graph problem Dominating Set, we
introduce and study the notion of a data reduction schemes.

Our work is based on two lines of research both concerned with solving NP-
hard problems. On the one hand, there is the concept of polynomial-time ap-
proximation algorithms and, in particular, the concept of polynomial-time ap-
proximation schemes (PTAS) where one gets a better approximation guarantee
at the cost of higher running times (see [4] for details). On the other hand, there
is the paradigm of local search (see [1] for details). In this paper, we combine
ideas from both research areas. More specifically, based on Dominating Set,
generalizing and extending previous work [3], we develop a whole scheme of data
reduction rules. The central goal is to gain a stronger data reduction at the cost
of increased preprocessing time (thus relating to the PTAS paradigm) through
an approach that searches through “increasing neighborhoods” of graph vertices
(thus relating to local search).

? Supported by the Deutsche Forschungsgemeinschaft (DFG), project PEAL (param-
eterized complexity and exact algorithms), NI 369/1, and Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

The Dominating Set problem is: given a graph G = (V, E) and a positive
integer k, find a dominating set of size at most k, i.e., a set V ′ ⊆ V , |V ′| ≤ k,
and every vertex in V \V ′ is adjacent to at least one vertex in V ′. When dealing
with the corresponding optimization problem, we will use ds(G) to denote the
size of an optimal dominating set in G.

The idea of data reduction is to efficiently “cut away easy parts” of the given
problem instance and to produce a new and size-reduced instance where then
exhaustive search methods etc. can be applied. In [3] it is shown that, for planar
graphs, with two easy to implement polynomial-time data reduction rules one
can transform an instance (G, k) of Dominating Set into a new instance (G′, k′)
with k′ ≤ k and the number of vertices of G′ bounded by O(k) such that (G, k)
is a yes-instance iff (G′, k′) is a yes-instance. Thus, by means of these rules in
polynomial time one can usually find several vertices that are part of an optimal
dominating set, whilst reducing the size of the input graph considerably.

In this work, we provide a whole scheme of data reduction for minimum
domination in graphs. We develop a general framework of data reduction rules
from which the two data reduction rules given in [3] can be obtained as easy
special cases. In fact, the more complex one of these two rules is even improved.
Moreover, we demonstrate that this extension makes it possible to handle graphs
that are not amenable to the previous rules. Exploring the joint neighborhood
of ` vertices for fixed ` ≥ 1, our data reduction rules run in nO(`) worst-case-
time.1 Besides introducing and analyzing the concept of a general data reduction
scheme for domination in undirected graphs, we additionally demonstrate how
to transfer data reduction for undirected graphs to directed graphs. Despite its
practical significance (e.g., in biological and social network analysis [2]), domina-
tion in directed graphs so far has been neglected in parameterized algorithmics.
First, we show a direct translation of undirected into directed reduction rules.
Second, we present new reduction rules that make it possible to prove a linear-
size problem kernel for Dominating Set on directed planar graphs.

Due to the lack of space, some details and proofs had to be omitted. Signifi-
cant parts of this work are based on [6].

2 Preliminaries and Previous Work

A data reduction rule for, e.g., Dominating Set replaces, in polynomial time,
a given instance (G, k) by a “simpler” instance (G′, k′) such that (G, k) is a yes-
instance iff (G′, k′) is a yes-instance. A parameterized problem (the parameter
is k) is said to have a problem kernel if, after the application of the reduction
rules, the resulting reduced instance has size g(k) for a function g depending only
on k. For instance, Dominating Set restricted to planar graphs has a problem
kernel consisting of at most 335 · k vertices [3], recently improved to the upper
bound 67 · k [5]. Extensions to graphs of bounded genus appear in [7].

1 Based on our experiences [2] with implementing the two reduction rules from [3], we
would expect to get faster running times in practice.

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

All our data reduction rules have in common that they explore local struc-
tures of a given graph. Depending on these structures the application of a re-
duction rule may have the following two effects:

1. Determine vertices that can be chosen for an optimal dominating set.
2. Reduce/shrink the graph by removing edges and vertices.

We revisit two polynomial-time reduction rules which were introduced in [3].

Neighborhood of a single vertex. Consider a vertex v ∈ V of a given graph G =
(V, E). Partition the vertices of the open neighborhood N(v) := { u ∈ V | {u, v} ∈
E } of v into three different sets:

• the exit vertices Nexit(v), through which we can “leave” the closed neighbor-
hood N [v] := N(v) ∪ {v},

• the guard vertices Nguard(v), which are neighbors of exit vertices, and
• the prisoner vertices Nprison(v), which have no neighboring exit vertex:

Nexit(v) := { u ∈ N(v) | N(u) \ N [v] 6= ∅ },
Nguard(v) := { u ∈ N(v) \ Nexit(v) | N(u) ∩ Nexit(v) 6= ∅ },
Nprison(v) := N(v) \ (Nexit(v) ∪ Nguard(v)).

A vertex in Nprison(v) can only be dominated by vertices from {v}∪Nguard(v)∪
Nprison(v). Since v will dominate at least as many vertices as any other vertex
from Nguard(v) ∪ Nprison(v), it is safe to place v into an optimal dominating set
we seek for, which we simulate by adding a suitable gadget to G.

Old-1-Rule. Consider a vertex v of the graph. If Nprison(v) 6= ∅ then choose v
to belong to the dominating set: add a “gadget vertex” v′ and an edge {v, v′}
to G and remove Nguard(v) and Nprison(v) from G.2

Neighborhood of a pair of vertices. Similar to Old-1-Rule, explore the union of
the joint neighborhood N(v1, v2) := (N(v1) ∪ N(v2)) \ {v1, v2} of two vertices
v1, v2 ∈ V . Setting N [v1, v2] := N [v1] ∪ N [v2], define

Nexit(v1, v2) := { u ∈ N(v1, v2) | N(u) \ N [v1, v2] 6= ∅ },
Nguard(v1, v2) := { u ∈ (N(v1, v2) \ Nexit(v1, v2)) | N(u) ∩ Nexit(v1, v2) 6= ∅ },
Nprison(v1, v2) := N(v1, v2) \ (Nexit(v1, v2) ∪ Nguard(v1, v2)).

Here, we try to detect an optimal domination of the vertices Nprison(v1, v2) in
our local structure N(v1, v2). A vertex in Nprison(v1, v2) can only be dominated
by vertices from {v1, v2} ∪ Nguard(v1, v2) ∪ Nprison(v1, v2). The following rule
determines cases in which it is “safe” to choose one of the vertices v1 or v2 (or
both) to belong to an optimal dominating set we seek for.

Old-2-Rule. Consider a pair of vertices v1 6= v2 ∈ V with |Nprison(v1, v2)| > 1
and suppose that Nprison(v1, v2) cannot be dominated by a single vertex from
Nguard(v1, v2) ∪ Nprison(v1, v2).

2 Of course, in practical implementations (as in [2]) one would directly put v into the
dominating set. Similar observations hold for the other data reduction rules.

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

Case 1 If Nprison(v1, v2) can be dominated by a single vertex from {v1, v2}:
(1.1) If Nprison(v1, v2) ⊆ N(v1) as well as Nprison(v1, v2) ⊆ N(v2), then

• as a gadget add two new vertices w1, w2 and edges {v1, w1}, {v2, w1},
{v1, w2}, {v2, w2} to G and

• remove Nprison(v1, v2) and Nguard(v1, v2) ∩ N(v1) ∩ N(v2) from G.
(1.2) If Nprison(v1, v2) ⊆ N(v1), but not Nprison(v1, v2) ⊆ N(v2), then

• add a gadget vertex v′1 and an edge {v1, v
′
1} to G and

• remove Nprison(v1, v2) and Nguard(v1, v2) ∩ N(v1) from G.
(1.3) If Nprison(v1, v2) ⊆ N(v2), but not Nprison(v1, v2) ⊆ N(v1), then

choose v2: proceed as in (1.2) with roles of v1 and v2 interchanged.
Case 2 If Nprison(v1, v2) cannot be dominated by a single vertex from {v1, v2},

• add two gadget vertices v′1, v′2 and edges {v1, v
′
1}, {v2, v

′
2} to G and

• remove Nprison(v1, v2) and Nguard(v1, v2) from G.

The practical usefulness of these two rules on real-world graphs (e.g., Internet
graphs) has been demonstrated in [2].

3 A Data Reduction Scheme for Domination

In this section we establish the “mother rule” from which Old-1-Rule and Old-
2-Rule can be derived as easy special cases. The idea is to explore the joint
neighborhood of ` distinct vertices for a given constant `. To cope with this
more complex setting we will introduce a new gadget which generalizes the easy
gadget vertices as they were used in the above two basic reduction rules.

A General Gadget. Our general reduction rule will—on the fly—generate a
boolean “constraint formula” for an optimal dominating set D of the given
graph: We identify the vertices V of a graph G = (V, E) with 0/1-variables,
where the meaning of a 1(0)-assignment is that the corresponding vertex will
(not) belong to D. A boolean formula over the variables V then can be thought
of as a constraint on the choice of vertices for an optimal dominating set.

Definition 1. Let W ⊆ 2V be a collection of subsets of V . The constraint as-
sociated with W is a boolean formula FW in disjunctive normal form:

FW :=
∨

W∈W

∧

w∈W

w.

A set D ⊆ V fulfills constraint FW if the assignment where each vertex in D is
set to 1 and each vertex in V \ D is set to 0 satisfies FW .

A constraint that was generated by a reduction rule will be encoded by a cor-
responding gadget in our graph which “implements” the formula as a subgraph.
To keep the gadget as small as possible, it is desirable that the constraint itself
is as compact as possible. We use the following notion of “compactification.” A
set system W ⊆ 2V is said to be compact if no two elements in W are subsets of
each other, i.e., if for all W, W ′ ∈ W we have: W ⊆ W ′ ⇒ W = W ′.

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

Lemma 1. Let W ⊆ 2V . There exists a minimal compact subset Ŵ ⊆ W such
that FW is logically equivalent to FcW

and Ŵ can be found in polynomial time.

In the remainder, we call Ŵ the compactification of W .
The above mentioned gadgets will be of the following form.

Definition 2. Let G = (V, E) and let FW be a constraint associated with some
set system W = {W1, . . . , Ws} ⊆ 2V of ` := |⋃s

i=1 Wi| vertices. An FW -gadget
is a set of p :=

∏s

i=1 |Wi| new selector vertices

S := {u(x1,...,xs) | xi ∈ {1, . . . , |Wi|}}

and if p < ` another (` − p) blocker vertices B which are connected to G by
the following additional edges: For each 1 ≤ i ≤ s with Wi = {wi1, . . . , wi|Wi|}
and each 1 ≤ j ≤ |Wi|, we add edges between wij and all selector vertices in
{u(x1,...,xs) ∈ S | xi = j} and between wij and all blocker vertices in B. We
denote the resulting graph by G ⊕ FW .

The idea is, firstly, that a set of vertices V ′ ⊆ V fulfills the constraint FW iff
V ′ dominates all selector vertices in the FW -gadget. And, secondly, the blocker
vertices are used to enforce that we can always find an optimal dominating
set of G ⊕ FW without using any selector or blocker vertex at all. Encoding a
constraint FW by an FW -gadget, indeed, has the desired effect:

Proposition 1. Let G = (V, E) and let FW be a constraint associated with
some set system W ⊆ 2V . Then the size of an optimal dominating set of G
which fulfills FW is equal to the size of an optimal dominating set of G ⊕ FW .
Moreover, there exists an optimal dominating set of G⊕FW which contains only
vertices in V , i.e., it contains no selector or blocker vertex.

A Reduction Rule for the Joint Neighborhood of ` Vertices. In analogy to Old-
1-Rule and Old-2-Rule, we explore the union of the neighborhoods of ` vertices.
As a convention, we let, for V ′ ⊆ V , N(V ′) := (

⋃
v∈V ′ N(v)) \ V ′ and N [V ′] :=⋃

v∈V ′ N [v]. Consider a fixed set of ` vertices V` := {v1, . . . , v`} ⊆ V and set

Nexit(V`) := { u ∈ N(V`) | N(u) \ N [V`] 6= ∅ },
Nguard(V`) := { u ∈ N(V`) \ Nexit(V`) | N(u) ∩ Nexit(V`) 6= ∅ },
Nprison(V`) := N(V`) \ (Nexit(V`) ∪ Nguard(V`)).

The left-hand side of Figure 1 shows an example for these three sets for ` = 3.

Definition 3. For two sets ∅ 6= W, W ′ ⊆ V , we say that W is better than W ′

if |W | ≤ |W ′| and N [W] ⊇ N [W ′]. If W is better than W ′, we write W ≤ W ′.
If W ′ = ∅ and W 6= ∅, then always W ≤ W ′.

Checking whether W ≤ W ′ can be done in O((|W | + |W ′|) · n) time if we use
the adjacency matrix of the given graph.

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

� � � �
� � � �

� � � �
� � � �

� � �� � �� � �
� � �� � �� � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � �
� � �

� � �� � �� � �
	 	 		 	 		 	 	

� � �
� � �

� � �� � �� � �

v2v1
Nexit(V3)

Nguard(V3)

Nprison(V3)

v3

d
ec

a

b

ga
dg

et
� � � �
� � � �

� � � �
� � � �

� � �
� � �
� � �
� � �

� � �
� � �

� �
� �

� � �
� � �

� �
� �

� � �� � �� � �
� �� �� �

� � �� � �� � �
� �� �� �

v2v1

v3

Fig. 1. Example for 3-Rule. The left-hand side shows the partitioning of N(V3) for
V3 := {v1, v2, v3} into the sets Nexit(V3), Nguard(V3), and Nprison(V3). The com-

pactification of W (all subsets of vertices in V3 that dominate Nprison(V`)) is cW =
{{v1}, {v2, v3}}. The compactification of all alternative dominations of Nprison(V`) is
cWaltern = {{v1}, {v2, v3}, {v2, c}, {v2, d}, {v3, a}, {v3, b}, {a, d}, {b, d}}. Since, for each

element in cWaltern, we find a better element in cW, 3-Rule applies. The compactified
formula generated by 3-Rule is FcW

= v1 ∨ (v2 ∧ v3). The right-hand side shows N(V3)
after the application of 3-Rule. The FcW

-gadget is constructed according to Definition 2
using two selector vertices of degree 2 and one blocker vertex of degree 3.

Using this notation, for each ` ≥ 1, we obtain the following generalization of
the first two reduction rules, yielding a whole scheme of reduction rules. The idea
of the reduction scheme below is to deduce a constraint based on the question
which vertices from a given set V` dominate Nprison(V`).

`-Rule. Consider ` pairwise distinct vertices V` := {v1, . . . , v`} ⊆ V and sup-
pose Nprison(V`) 6= ∅.
• Compute the set

W :=
{

W ⊆ V` | Nprison(V`) ⊆ N [W]
}

of all vertex subsets of V` that dominate all prisoner vertices Nprison(V`), and
the set of all alternatives to dominate Nprison(V`) with less than ` vertices:

Waltern :=
{

W ⊆ N [Nprison(V`)] | Nprison(V`) ⊆ N [W] and |W | < `
}
.

• Compute the compactifications Ŵ of W and Ŵaltern of Waltern.

• If (∀W ∈ Ŵaltern∃W ′ ∈ Ŵ : W ′ ≤ W), then

- remove R :=
{
v ∈ Nguard(V`)∪Nprison(V`) | N [v] ⊆ ⋂

W∈cW N [W]
}
, and

- put an FcW
-gadget to G for the constraint associated with Ŵ.

An example for ` = 3 is given in Figure 1. If V` forms a size-` dominating set,
then `-Rule actually solves the domination problem. Moreover, `-Rule provides
a mathematically more elegant formalism than for instance Old-2-Rule does. In
addition, it generalizes Old-2-Rule:

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

Theorem 1. For each `, `-Rule is correct, i.e., for every graph G, we have
ds(G) = ds(G′), where G′ denotes the graph obtained from G by applying the
rule to ` distinct vertices. Moreover, 1-Rule is identical to Old-1-Rule and 2-
Rule applies to even more cases than Old-2-Rule.

Proof (Sketch). Observe that `-Rule only applies if for all W ∈ Ŵaltern we find

a W ′ ∈ Ŵ such that W ′ ≤ W (∗). Let G′′ := G⊕FcW
. We first of all argue that

ds(G′′) = ds(G). It is clear that ds(G′′) ≥ ds(G). Conversely, suppose that D is
an optimal dominating set for G. We distinguish two cases. First, suppose that
Nprison(V`) needs less than ` vertices to be dominated. Then, by definition of
Waltern, D has to fulfill FWaltern

. Hence, by the definition of compactification, we
know that D also fulfills FcWaltern

. In other words, this means that there has to

be a W ∈ Ŵaltern with W ⊆ D. But then, by assumption (∗), we have a W ′ ∈ Ŵ
with W ′ ≤ W . Since W ′ is better than W , this implies that D′ := (D \W)∪W ′

is a dominating set for G which fulfills FcW
and, hence, it is a dominating set

for G′′ (by Proposition 1) with |D′| ≤ |D|. Second, suppose that Nprison(V`)
needs exactly ` vertices D′ ⊆ D to be dominated. Then, it is clear that D′′ :=
(D \ D′) ∪ V` also forms a dominating set for G. But then, by construction, D′′

dominates all FcW
-gadget vertices, and, thus, D′′ is a dominating set for G′′ with

|D′′| = |D|.
It remains to show ds(G′′) = ds(G′). Observe that G′ = G′′ \ R = (G ⊕

FcW
) \ R = (G \ R) ⊕ FcW

with R as defined in `-Rule. First of all, we show
that ds(G′′) ≤ ds(G′). To see this, let D be an optimal dominating set for G′.
Then, by Proposition 1, there exists a dominating set D′ ⊆ V (G) of equal

size for G \ R which fulfills FcW
. This means that there exists a W ∈ Ŵ with

W ⊆ D′. By definition of R, this implies that R ⊆ N [R] ⊆ N [
⋂

X∈cW X] ⊆
N [W] ⊆ NG′=G′′\R[D′] ⊆ NG′′ [D′], which shows that D′ is a dominating set
for G′′ = G ⊕ FcW

with |D′| = |D|. Similarly, one shows that ds(G′) ≤ ds(G′′).
It is not hard to see that 1-Rule is identical to Old-1-Rule and that 2-Rule

applies whenever Old-2-Rule applies. In addition, there are examples where Old-
2-Rule does not apply and where 2-Rule does apply. For instance, we can con-
struct a graph where a single vertex v from Nprison(V2) dominates Nprison(V2).
(i.e., Old-2-Rule does not apply) and 2-Rule still applies, since, e.g., {v} ≤ {w}
where w ∈ V2. ut

The following proposition gives a simple worst-case estimate on the time
needed to apply `-Rule, and, together with the subsequent Theorem 2, shows
that we have a relationship between “quality” of data reduction and running
time as mentioned in the introductory section.

Proposition 2. Let G = (V, E). Applying `-Rule for all size-` vertex sets V` :=
{v1, . . . , v`} ⊆ V takes O(n2`) time for ` > 1 and O(n3) time for ` = 1.

A graph G = (V, E) is said to be reduced with respect to `-Rule if there is no
set of distinct vertices v1, . . . , v` for which `-Rule can be applied. In a sense, the
data reduction scheme given by `-Rule builds a “strict hierarchy” of rules:

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

Theorem 2. Let H` := {1-Rule, . . . , `-Rule}, ` ≥ 1. Then, for each ` > 1, H`

is strictly more powerful than H`−1.

Proof (Sketch). For each level ` > 1 of this hierarchy, we can construct a graph
which is reduced with respect to all rules in H`−1 but which is still reducible
with respect to `-Rule. For example, let G` = P2 × P2`−1 be the complete grid
graph of width 2 and length 2` − 1. Then, it can be verified by induction on `
that G` has the above mentioned property. ut

4 Directed Dominating Set

In several applications we have to deal with directed graphs
−→
G = (V, A). Here,

a vertex v ∈ V is dominated iff it is in the dominating set or if there is an arc
(u, v) ∈ A (i.e., v is an outgoing neighbor of u) and u is in the dominating set.

Transforming Directed Graphs into Undirected Graphs. Let
−→
G = (V, A) be a di-

rected graph. Construct an undirected graph G′ = (V ′, E), where V ′ := {u′, u′′ |
u ∈ V }, and E :=

{
{u′, u′′} | u ∈ V

}
∪

{
{u′′, v′}, {u′′, v′′} | (u, v) ∈ A

}
.

Proposition 3. Using the notation above, ds(
−→
G) = ds(G′).

Clearly, in order to find an optimal dominating set for a directed graph
−→
G ,

we can use the above transformation and then apply our undirected reduction
rules (see Section 3) to the transformed instance G′. The drawback of this pro-

cess is that the transformed graph G′ contains twice as many vertices as
−→
G .

Moreover, the transformation in general does not preserve planarity. Hence, we
subsequently modify the data reduction scheme for the undirected case to obtain
a “directed data reduction scheme” for domination.

A Reduction Scheme for Directed Dominating Set. Let
−→
G = (V, A) be a di-

rected graph. Define N(v) := {w ∈ V | (v, w) ∈ A}. For an `-vertex set V` :=
{v1, . . . , v`}, explore N(V`) :=

⋃
v∈V`

N(v) \ V`.
Suppose we defined the partitioning Nexit(V`), Nguard(V`), and Nprison(V`)

and the reduction scheme in complete analogy to the undirected case, then we
would run into the following problem: The vertices in Nprison(V`) (if this set is
non-empty) may also be dominated by vertices outside N [V`].

3 This difficulty
is circumvented by slightly modifying the definition of the sets Nguard(V`) and
Nprison(V`). More precisely, we additionally define the set

Nenter(V`) := { u ∈ (N(V`) \ Nexit(V`)) | ∃w ∈ (V \ N [V`]) : (w, u) ∈ A}.
3 For example, there might be a single vertex v (with in-degree 0) which dominates

N(V`), but which is not contained in N(V`). Then, clearly, it would be optimal
to choose v. Deducing a constraint—based on the question which vertices from V`

dominate Nprison(V`) as done in the undirected case—would lead to a wrong result.

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

Herein, we used

Nexit(V`) := { u ∈ N(V`) | ∃w ∈ (V \ N [V`]) : (u, w) ∈ A}.

The modified versions of Nguard(V`) and Nprison(V`) are defined as follows:

Nguard(V`) := { u ∈ (N(V`) \ (Nexit(V`) ∪ Nenter(V`))) | (N(u) ∩ Nexit(V`)) 6= ∅ },
Nprison(V`) := N(V`) \ (Nexit(V`) ∪ Nenter(V`) ∪ Nguard(V`)).

In this way, we can build a data reduction scheme for Directed Dominat-

ing Set as a slight modification of `-Rule in the undirected case.

Directed `-Rule. Consider ` pairwise distinct vertices V` := {v1, . . . , v`} ⊆ V
and suppose Nprison(V`) 6= ∅. Compute the sets

W :=
{

W ⊆ V` | Nprison(V`) ⊆ N [W]
}
,

Waltern :=
{

W ⊆ N [Nprison(V`)] | Nprison(V`) ⊆ N [W] and |W | < `
}
,

and the compactifications Ŵ of W and Ŵaltern of Waltern.

If (∀W ∈ Ŵaltern∃W ′ ∈ Ŵ : W ′ ≤ W), then remove

• R :=
{
v ∈ Nenter(V`)∪Nguard(V`)∪Nprison(V`) | N [v] ⊆ ⋂

W∈cW
N [W]

}
and

• put an FcW
-gadget4

Directed Dominating Set on Planar Graphs. Here, we provide a linear-size prob-
lem kernel for domination on directed planar graphs. To show this, we cannot
make use of the transformation from directed to undirected graphs as described
at the beginning of the section because the construction there does not preserve
planarity. Hence, we use the Directed `-Rules (` = 1 and ` = 2 suffice and
preserve planarity), yielding:

Theorem 3. Directed Dominating Set on planar graphs has a linear-size
problem kernel which can be found in O(n4) time. This implies that Directed

Dominating Set on planar graphs is fixed-parameter tractable.

We again omit the proof and just remark on the pitfalls behind: An ad-
hoc idea to prove this result might be to take a reduced directed graph and
to replace each arc by an undirected edge. If the directed graph was reduced,
then one might hope that the corresponding undirected one is, too. But this
is generally wrong. Moreover, even if the corresponding undirected graph was
reduced, then still it is a problem that, as a rule, the undirected graph would
have a usually smaller dominating set than the original directed one; however,
there is no general relationship between these two set sizes. Hence one has to
turn back to a direct analysis of the Directed `-Rules. Fortunately, much of the
proof work can be carried out by similar constructions as in the undirected case
dealt with in [3].

4 In contrast to the gadget with undirected edges as introduced in Definition 2, the
newly introduced arcs now point from vertices in W ∈ cW to selector vertices.

Proc. 32nd SOFSEM-06, Vol. 3831 in LNCS, pp. 137-147, Springer, 2006

5 Outlook

We showed (Theorem 2) that the presented reduction rules form a strict hierar-
chy when considering larger and larger joint neighborhoods. It would be of hight
interest to strengthen this result in the sense that one can mathematically relate
the degree of increased reduction (e.g., by proving smaller problem kernel sizes)
and the running time to be spent. Note that this would parallel relations that
hold in the case of approximation schemes, and it would tie the notions of data
reduction scheme and PTAS closer.

Presenting our reduction rules, for theoretical reasons we expressed boolean
constraints as graph gadgets. From a practical point of view, in implementations
it might make more sense not to use the graph gadgets (as has also been done
when (successfully) experimentally testing the two reduction rules from [3] in [2])
but to use the boolean constraint formulas in a direct combination with the
reduced graph instance. So far, this issue is completely unexplored.

From a parameterized complexity point of view, it would be interesting to
gain further “tractability results” for W[1]-hard problems with respect to data
reduction. More specifically, consider Dominating Set: Since Dominating Set

is W[2]-complete, unless an unlikely collapse in parameterized complexity theory
occurs, our data reduction scheme cannot serve for showing that using 1-Rule,
2-Rule, . . ., c-Rule, for some constant c, generates a problem kernel in general
graphs. A more realistic and nevertheless interesting kind of investigation would
be to see what happens when c becomes dependent on the dominating set size k,
e.g., c = k/4 or c =

√
k. If then the generated problem kernel consisted of

g(k) vertices, this would imply an algorithm with O(2g(k) + n2c) running time
for Dominating Set, which might be considered as a significant (theoretical)
improvement over the trivial exact algorithm running in O(nk+2) time.

References

1. E. Aarts and J. K. Lenstra (eds). Local Search in Combinatorial Optimization.

Wiley-Interscience Series in Discrete Mathematics and Optimization, 1997.
2. J. Alber, N. Betzler, and R. Niedermeier. Experiments on data reduction for

optimal domination in networks. To appear, Annals of Operations Research, 2005.
3. J. Alber, M. R. Fellows, and R. Niedermeier. Polynomial time data reduction for

Dominating Set. Journal of the ACM, 51(3):363–384, 2004.
4. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and

M. Protasi. Complexity and Approximation. Springer-Verlag, 1999.
5. J. Chen, H. Fernau, I. A. Kanj, and G. Xia. Parametric duality and kernelization:

Lower bounds and upper bounds on kernel size. In Proc. 22d STACS, volume 3404
of LNCS, pages 269–280. Springer, 2005.

6. B. Dorn. Extended data reduction rules for domination in graphs (in German).
Student project, WSI für Informatik, Universität Tübingen, Germany, 2004.

7. F. V. Fomin and D. M. Thilikos. Fast parameterized algorithms for graphs on
surfaces: linear kernel and exponential speed-up. In Proc. 31st ICALP, volume
3142 of LNCS, pages 581–592. Springer, 2004.

