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Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 20031 IntrodutionWorst-ase upper bounds for NP-hard problems. Various NP-hardoptimization problems arise naturally in many areas of omputer siene whileno polynomial-time algorithms for them are known. For some of these prob-lems, there are polynomial-time approximation algorithms that give solutionswithin a fator of some performane ratio � of the optimal solution. However,for those problems that are MAX-SNP-hard (see, e.g., [1,3,31℄), it is knownthat the performane ratio of a polynomial-time algorithm annot be betterthan some onstant � (inapproximability ratio) unless P = NP. For exam-ple, for MAX-2-SAT (for formal de�nitions, see below), � = 0:931 [17℄ and� = 0:955 [20℄.Reently, there was an explosion in proving (exponential) worst-ase time up-per bounds for NP-hard problems and, in partiular, for the exat solutionof MAX-SNP-hard problems. Most results in the area onentrate aroundSAT, the problem of satis�ability of a propositional formula in onjuntivenormal form (CNF ), whih an be easily solved in time of the order 2N ,where N is the number of variables in the input formula. In the early 1980s,this trivial bound was improved for formulas in 3-CNF (every lause ontainsat most three literals) by Monien and Spekenmeyer [29℄ and independentlyby Dantsin [10℄ (e.g., a 2N=1:44 bound 5 was proved). After that, many up-per bounds for SAT [23,27℄, k-SAT [12,13,26,32,36,37℄, MAX-SAT [4,28,30℄,MAX-2-SAT [4,30℄, and other NP-hard problems were obtained.Previous researh and our results. Conerning the problems for formu-las in CNF, most authors onsider bounds w.r.t. three main parameters:� the length L of the input formula (i.e., the number of literal ourrenes),� the number K of its lauses, and� the number N of the variables ourring in it.The best urrently known bounds for SAT are 2K=3:23 and 2L=9:7 [23℄, while,w.r.t. the number of variables, nothing better than trivial 2N is known. Inonstrast, for 3-SAT, randomized 1:3303N [37℄ and deterministi 1:481N [12,13℄are known, while the bounds w.r.t. K and L are the same as for SAT.The maximum satis�ability problem (MAX-SAT ) is an important general-ization of SAT. Here, we are given a formula in CNF, and the answer isthe maximum number of simultaneously satis�able lauses. This problem is5 For brevity, we usually omit a polynomial fator in this paper: e.g., if we write2N=1:44, we mean poly(jF j) � 2N=1:44, where jF j is the length of representation of theinput. 2



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003NP-omplete 6 and MAX-SNP-omplete, even if eah lause ontains atmost two literals (MAX-2-SAT ; see, e.g., [31, Theorem 13.11℄). MAX-SATand MAX-2-SAT are well-studied in the ontext of approximation algorithms(see, e.g., [2,11,17,20,25,38℄). Reently, numerous results appeared in the do-main of worst-ase time bounds for the exat solution of MAX-SAT andMAX-2-SAT [4,11,19,21,22,28,30℄. The urrently best bounds for MAX-SATare 2K=2:36 and 2L=6:89 [4℄. For MAX-2-SAT, the onsiderably better bounds2K=2:88 [30℄ and 2K=3:44 (impliit in [4℄) follow from MAX-SAT algorithms. Inthis paper we prove a muh better 2K=5 bound by giving a diret (and muhsimpler!) algorithm for MAX-2-SAT. Our result still holds if K in the expo-nent is the number of 2-lauses (i.e., unit lauses are not ounted). Therefore,the bound 2L=10 follows, whih is the �rst bound w.r.t. L that is better forMAX-2-SAT than for MAX-SAT.Using our MAX-2-SAT algorithm, we obtain the bound 2M=3 for the MAX-CUTproblem (given a graph with M edges, �nd a ut of maximum size in it). Thisis of partiular interest for graphs with bounded degree: If the maximum ver-tex degree is 3, then MAX-CUT an be solved in time 2n=2 (where n is thenumber of verties) and, if the maximum vertex degree is 4, then MAX-CUTan be solved in time 22n=3. For larger degree d � 5, our algorithm does notimprove a simple 2nd=(d+1) bound [39℄. We are not aware of previous non-trivialworst-ase upper bounds for the exat solution of MAX-CUT, exept for theparameterized bounds given by Mahajan and Raman [28℄. Their results are abound of 22k for the question of whether a given graph has a ut of size k, anda bound of 24k for the question of whether a given graph with m edges has aut of size dm2 e+ k.Our results w.r.t.K and w.r.t.M also hold for the versions of MAX-2-SAT andMAX-CUT where eah lause (or edge, resp.) is assigned an integer weight. Inthis ase, K and M in the above bounds denote the total weight of all lauses(resp., edges).Splitting algorithms. Most of the algorithms orresponding to the boundsmentioned above, as well as the algorithms presented in this paper, use akind of Davis-Putnam-Logemann-Loveland proedure [14,15℄. In short, thisproedure redues the problem for a formula F to the problem for two formulasF [v℄ and F [v℄ (where v is a propositional variable). This is alled \splitting".Before the algorithm splits eah of the obtained two formulas, it an transformthem into simpler formulas F1 and F2 using transformation rules . In a splittingtree orresponding to the exeution of suh an algorithm, the node labeled byF has two hildren labeled by F1 and F2. The algorithm does not split a6 A more preise NP-formulation is, of ourse, \given a formula in CNF and aninteger k, deide whether there is an assignment that satis�es at least k lauses."3



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003formula if it is trivial to solve the problem for it; these formulas are the leavesof the splitting tree. The running time of the algorithm is within a poly(jF j)fator of the number of leaves.Soures of our improvements. Our MAX-2-SAT algorithm is a typialsplitting algorithm, i.e., to desribe it we need to speify: a set of formulasorresponding to the leaves of our tree, a heuristi determining the hoie ofa variable for splitting, and transformation rules. Worst-ase analysis of suhalgorithms usually ontains a huge amount of ase enumeration. The numberof ases we need to onsider in our proof is tremendously smaller than inthe urrent results for general MAX-SAT [4,30℄. Our MAX-2-SAT algorithmmakes use of two main ideas.The leaves of our splitting tree are formulas ontaining only unit lauses(learly, MAX-1-SAT is trivial). Therefore, in the analysis of the running timeof our algorithm we ount only 2-lauses. We prove that every variable our-ring in at most two 7 2-lauses (and maybe some 1-lauses) an be eliminatedin polynomial time 8 . If there is a variable ourring in three 2-lauses, thenwe an make a splitting suh that eah of the formulas F1 and F2 has atleast �ve 2-lauses less than F (this situation orresponds to the reurreneinequality T (K) � 2T (K � 5) for the running time). Clearly, we an say thesame about F ontaining a variable ourring in at least �ve 2-lauses. If oursplitting tree ontains only formulas of these types, then the running time is atmost 2K=5. The remaining ase, i.e., only variables ourring in four 2-lauses,orresponds to the reurrene inequality T (K) � 2T (K � 4).The seond idea is onneted to a general point in splitting algorithms forNP-hard problems: usually, a problem has \bottlenek" instanes, i.e., theinstanes orresponding to the \worst" reurrene inequality. For example, forthe algorithm desribed above, these are the formulas for whih our splittingorresponds to the inequality T (K) � 2T (K � 4). Usually, this situationis handled by looking to the next level of splitting and showing that theobtained two instanes are not \bottlenek" [23,30℄ whih gives an inequalitywith an \intermediate" solution. In this paper, we handle this situation in adi�erent way. Namely, we show that we an build a splitting tree suh thateah branh ontains at most one \bottlenek" instane. Therefore, we anomit the orresponding reurrene inequality from asymptoti analysis.For the MAX-CUT problem, there is an easy translation of any of its instanes7 For simpliity, we give here our ideas in the unweighted ase.8 In fat, it follows easily that MAX-2-SAT is solvable in polynomial time whenevery variable ours in at most two 2-lauses (and maybe some 1-lauses). Notethat MAX-2-SAT is NP-omplete and MAX-SNP-omplete, even if the numberof ourrenes of every variable is bounded by three (see, e.g., [6,34℄).4



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003with M edges into a MAX-2-SAT instane with 2M lauses. This would al-ready give us a 22M=5 bound. However, the formulas given by the translationsatisfy a very spei� ondition. Moreover, this ondition is preserved by ourtransformation rules. For suh formulas, our algorithm runs with small modi-�ations in the time 2K=6, i.e., MAX-CUT an be solved in the time 2M=3.History of the paper. The present work started from [18,19,21,22℄, whereparts of the ideas of this paper already appeared. The authors thank DIMACSfor �nanial support that gave them an opportunity to meet at the DIMACSWorkshop \Faster Exat Algorithms for NP-Hard Problems," where the ideasfrom earlier disussions between them were implemented into better algo-rithms with signi�antly better bounds.Organization of the paper. Our paper is organized as follows. In Se-tion 2, we give basi de�nitions. In Setion 3, we desribe the transformationrules we use. In Setion 4, we present our new MAX-2-SAT algorithm andits analysis. Setion 5 shows the appliation to MAX-CUT. Conlusions, openquestions, and omparison to losely related researh are given in Setion 6.2 BakgroundLet V be a set of Boolean variables. The negation of a variable v is denoted byv. Literals are variables and their negations. If l denotes a negated variable v,then l denotes the variable v.Algorithms for �nding the exat solution of MAX-SAT are usually designedfor the unweighted MAX-SAT problem. However, the formulas are usuallyrepresented by multisets (i.e., formulas in CNF with positive integer weights).In this paper, we onsider the weighted MAX-SAT problem with positiveinteger weights. A (weighted) lause is a pair (!; S) where ! is a stritlypositive integer number and S is a nonempty �nite set of literals whih doesnot ontain, simultaneously, any variable together with its negation. We all! the weight of a lause (!; S).An assignment is a �nite set of literals that does not ontain any variabletogether with its negation. Informally speaking, if an assignment A ontains aliteral l, then the literal l has the value True in A. In addition to usual lauses,we allow a speial true lause (!;T) whih is satis�ed by every assignment.(We also all it a T-lause.) 5



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003The length of a lause (!; S) is the ardinality of S. A k-lause is a lauseof length exatly k. In this paper, a formula in (weighted) CNF (or simplyformula) is a �nite set of (weighted) lauses (!; S), with at most one lausefor eah S. If a formula ontains only one lause, for short we write this lauseinstead of the formula. A formula is in 2-CNF if it ontains only 2-lauses,1-lauses and a T-lause. The length of a formula is the sum of the lengths ofall its lauses. The total weight of all 2-lauses of a formula F is denoted byK2(F ) and by K2 when the formula is lear from the ontext.The pairs (0; S) are not lauses: for simpliity, however, we write (0; S) 2 Ffor all S and all F . Thus, the operators + and � are de�ned:F +G= f(!1 + !2; S) j (!1; S) 2 F and (!2; S) 2 G; and !1 + !2 > 0g;F �G= f(!1 � !2; S) j (!1; S) 2 F and (!2; S) 2 G; and !1 � !2 > 0g:In other words, + and � denote the union and the di�erene of formulasonsidered as multisets of lauses.Example 1 If F = f (2;T); (3; fx; yg); (4; fx; yg) gand G = f (2; fx; yg); (4; fx; yg) g;then F �G = f (2;T); (1; fx; yg) g: �For a literal l and a formula F , the formula F [l℄ is obtained by setting thevalue of l to True. More preisely, we de�neF [l℄ = f(!; S) j (!; S) 2 F and l; l =2 Sg+f(!; S n f l g) j (!; S) 2 F and S 6= f l g and l 2 Sg+f(!;T) j ! is the sum of the weights !0of all lauses (!0; S) of F suh that l 2 Sg:(Note that no (!; ;) or (0; S) is inluded in F [l℄, F + G or F � G.) For anassignment A = fl1; : : : ; lsg and a formula F , we de�ne F [A℄ = F [l1℄[l2℄ : : : [ls℄6



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003(evidently, F [l℄[l0℄ = F [l0℄[l℄ for every pair of literals l; l0 with l 6= l0). For short,we write F [l1; : : : ; ls℄ instead of F [fl1; : : : ; lsg℄.Example 2 IfF = f (1;T); (1; fx; yg); (5; fyg); (2; fx; yg); (10; fzg); (2; fx; zg) g;then F [x; z℄ = f (12;T); (7; fyg) g: �The optimal value of a maximum weight assignment for formula F is de�nedas OptVal(F ) = maxAf! j (!;T) 2 F [A℄ g, where A is taken over all possibleassignments. An assignment A is optimal if F [A℄ ontains only one lause(!;T) (or does not ontain any lause, in this ase ! = 0) and OptVal(F ) =! (= OptVal(F [A℄) ).If we say that a literal l ours in a lause or in a formula, we mean that thislause (more formally, its seond omponent) or this formula (more formally,one of its lauses) ontains the literal l. However, if we say that a variable vours in a lause or in a formula, we mean that this lause or this formulaeither ontains the literal v or it ontains the literal v.For a literal l, we write #l(G) to denote the total weight of the lauses ofa formula G in whih l ours. We omit G when the meaning of G is learfrom the ontext. We also write #(k)l to denote the total weight of k-lausesin whih l ours. The weight of a variable is the total sum of the weights ofthe 2-lauses the variable ours in.A losed subformula G is a subset of a formula F suh that none of thevariables ourring in G ours in F �G. We use this term only for non-trivialsubformulas, i.e. both G and F �G ontain at least one variable.3 Transformation rulesA orret transformation rule replaes a formula F with a \simpler" formula F 0suh that F has an optimal assignment with weight ! i� F 0 has an optimalassignment with weight !, i.e., a orret transformation rule preserves OptVal.In this setion, we present the transformation rules we use and show theirorretness. Note that these rules inrease neither the weight of any variablenor the total weight of the 2-lauses. 7



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Pure literal. A literal is pure in a formula F if it ours in F , and its nega-tion does not our in F . The following lemma is well-known and straightfor-ward.Lemma 3 If b is a pure literal in F , then OptVal(F ) = OptVal(F [b℄).Rule Tpure replaes F with F [b℄ if b is a pure literal.Annihilation of 1-lauses. Rule Tann \annihilates" opposite 1-lauses,i.e., it replaes F with (F�f (!; fag) ; (!; fag) g)+(!;T) if F ontains lauses(!1; fag) and (!2; fag) and ! = min(!1; !2).Resolution. In this paper, the resolvent R(C;D) of two 2-lauses C =(!1; fl1; l2g) and D = (!2; fl1; l3g) is the formulaf (max(!1; !2); T); (min(!1; !2); fl2; l3g) g (1)if l2 6= l3, and it is the formula f(!1 + !2;T)g, otherwise. This de�nition isslightly non-traditional, but it is very useful in the MAX-SAT ontext.The following lemma is a straightforward generalization of a statement aboutusual resolution (see, e.g., [35℄).Lemma 4 If F ontains 2-lauses C = (!1; fv; l1g) and D = (!2; fv; l2g)suh that the variable v does not our in other lauses of F , thenOptVal(F ) = OptVal( (F � fC;Dg) +R(C;D) ): (2)Rule TDP replaes F with (F �fC;Dg)+R(C;D) if F , C, and D satisfy theonditions of Lemma 4.Dominating 1-lause. The following fat was observed in [30℄.Lemma 5 ([30℄) If for a literal l and a formula F , #(1)l � #l, thenOptVal(F ) = OptVal(F [l℄): (3)Rule Tdom replaes F with F [l℄ in suh a ase.8



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Small losed subformula. We an easily ompute the optimal value for alosed subformula G ontaining at most, say, 12 variables. Clearly,OptVal(F ) = OptVal(F �G) + OptVal(G): (4)Rule Tsmall replaes F with (F �G) + (OptVal(G);T) in suh a ase.Rare variable. Let F be a formula, and let a be a literal suh that #(2)a = 2,#(2)a = #(1)a = 0, and #(1)a = 1. Consider a 2-lause (!; fa; bg) in F . Rule Trarereplaes this lause with (!;T) and replaes literal a with literal b and literala with literal b in all other lauses.Lemma 6 Rule Trare is orret.PROOF. Let F 0 be the obtained formula. It is trivial that OptVal(F 0) �OptVal(F ). We now prove the opposite inequality.Let A be an optimal assignment for F . Let b 2 A. Consider F [b℄. Note thatwe an apply Tdom to the literal a in this formula, i.e.,OptVal(F ) = OptVal(F [A℄) � OptVal(F [b℄)= OptVal(F [a; b℄) = OptVal(F 0[a; b℄) � OptVal(F 0):Let now b 2 A. Consider F [b℄. Note that we an apply Tann and then Tpureto the literal a in this formula, i.e.,OptVal(F ) = OptVal(F [A℄) � OptVal(F [b℄)= OptVal(F [a; b℄) = OptVal(F 0[a; b℄) � OptVal(F 0): �4 A 2K=5-time algorithm for MAX-2-SATIn this setion, we present Algorithm 1 whih solves MAX-2-SAT in timepoly(jF j) �2K2=5, where K2 is the total weight of 2-lauses of the input formula(in the ase of unweighted MAX-2-SAT,K2 is the number of 2-lauses) and jF jis the length of representation of the input. We �rst present the algorithm andthen estimate its running time and show its orretness using several lemmas.9



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Algorithm 1Input: A formula F in weighted 2-CNF.Output: OptVal(F ).Method.(A1) Apply Tpure, Tann, TDP, Tdom, Tsmall, Trare to F as long as at leastone of them is appliable.(A2) If F ontains only a T-lause, return the weight of this lause.(A3) If F onsists of several losed subformulas, then deompose F into twolosed subformulas H1 and H2, apply Algorithm 1 to eah of the for-mulas H1 + (1; fu; vg) and H2 + (1; fu; vg) (where u and v are newvariables) 9 , and return OptVal(H1) + OptVal(H2)� 2.(A4) If F ontains a variable v of weight at least �ve, then returnmax(OptVal(F [v℄);OptVal(F [v℄)).(A5) If eah variable has weight exatly four, then hoose a variable v andreturn max(OptVal(F [v℄);OptVal(F [v℄)).(A6) If F ontains only variables of weight three and weight four, and bothpossibilities are realized, then hoose 10 a variable v and determine or-ret transformation rules that modify F [v℄ and F [v℄ into formulas F1and F2 satisfying K2(F )�K2(Fi) � 5 (i = 1; 2) and ontaining a vari-able of weight at most three eah; return max(OptVal(F1);OptVal(F2)).(A7) Choose 11 a variable v suh that transformation rules modify F [v℄ andF [v℄ into formulas F1 and F2 satisfying K2(F )�K2(Fi) � 5 (i = 1; 2);return max(OptVal(F1);OptVal(F2)). �We �rst formulate the additional straightforward properties of our transfor-mation rules that we use in our proofs.Lemma 7 Let F be a formula, and let x be a variable of weight one or two.Then repeated appliation of transformation rules to x9 For the ease of presentation, we introdue new variables u and v not ourringin F in order to maintain the indution hypothesis in the proof of the followingTheorem 10. Theorem 10 states our main result onerning the orretness andrunning time of Algorithm 1. Note that omitting these new variables here wouldnot hange the behavior of the algorithm, but would make it more involved to provea bound on the worst-ase running time in Theorem 10.10 Lemma 8 below shows that a variable and transformation rules satisfying therequirements of step (A6) an be found in polynomial time.11 Lemma 9 below shows that a variable and transformation rules satisfying therequirements of step (A7) an be found in polynomial time.10



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003(1) eliminates this variable from F ;(2) dereases the total weight of 2-lauses of F ; and(3) does not hange lauses that do not ontain x (in partiular, it does nothange the weights of the variables that do not our together with x in alause).The following two lemmas address speial ases that will be needed in ourmain theorem whih states the orretness of Algorithm 1 and proves thelaimed running time. Lemma 8 shows how to �nd an appropriate variableand transformation rules at step (A6) of the algorithm. Lemma 9 shows thesame for step (A7).Lemma 8 Let F be a formula suh that there are no losed subformulas andall variables are of weight either three or four, where both these possibilities arerealized. Furthermore, let us assume that no transformation rule is appliable.Then, we an �nd a variable v and determine orret transformation rules thatmodify the formulas F [v℄ and F [v℄ into formulas F1 and F2 suh that for eahi = 1; 2,(1) K2(F )�K2(Fi) � 5, and(2) Fi ontains a variable of weight exatly one, two, or three.PROOF. Let x be a variable of weight three and let y be a variable of weightfour. Furthermore, let x and y our together in a lause. Suh variables mustexist, sine there are no losed subformulas.As a speial ase, let us �rst assume that there is a variable v (v = x is possible)of weight three that only ours in the 2-lauses where y ours. Then, takethe variable z (z = x is possible) that only ours together with y in a lauseof weight one and look at F [z℄ and F [�z℄: In both formulas, all lauses thatontain y form a small losed subformula. Hene, we apply Tsmall to F [z℄ andF [�z℄, resulting in F1 and F2. In this way, K2(F ) � K2(Fi) � 6 for i = 1; 2,beause we an eliminate all 2-lauses ontaining the variables y and z. Iflaim (2) is violated, i.e., Fi only ontains variables that our at least fourtimes in 2-lauses, then we replae Fi with Fi� (1;T)+(1; fu1; u2g), where u1and u2 are new variables (learly, this modi�ation is a orret transformationrule). Note that we an \subtrat" (1;T) beause we an \spend" one of the T-lauses that appear due to the last substitution: sine we hadK2(F )�K2(Fi) �6 before, we have K2(F ) � K2(Fi) � 5 after the modi�ation, and laim (1)is still true. Note that u1 now ful�lls laim (2).If the previous speial ase does not apply, then x ours in F [y℄ in 2-lausesof weight one or two. We now produe a formula F1 from F [y℄ by applyingtransformation rules to x in F [y℄ until x is eliminated. To ful�ll laim (2),11



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003we an hoose any variable z ourring together with y, and ourring alsotogether with a variable di�erent from x and y. Note that if suh z exists, thenit has weight at most three in F [y℄, but still has at least one ourrene theretogether with a variable di�erent from x. Therefore, by Lemma 7(3), after theelimination of x, the variable z still ours in the formula and has weight atmost three.Suppose now that suh z does not exist. Then it annot be the ase that yours in 2-lauses together with x and at least two other variables, beauseone of the latter variables would have an ourrene together with a variabledi�erent from x and y. We now have that y ours in 2-lauses together withx and only one other variable z0. Sine F ontains no losed subformulas, ymust our together with z0 in 2-lauses of total weight three. Sine the speialase above does not apply, F should ontain one more ourrene of z0, andthis is an ourrene together with x. Let z00 be the variable ourring in theremaining 2-lause ontaining x. If x is eliminated by TDP or Trare, then z0still ours in F1 ful�lling laim (2). If, however, x is eliminated by Tpure orTdom, then exatly one 2-lause ontaining z00 disappears and therefore z00�l�lls laim (2).In the same way, we get F2 from F [�y℄. �Lemma 9 Let F be a formula being split at step (A7). Then for any variablev we an �nd in polynomial time transformation rules that modify the formulasF [v℄ and F [v℄ into formulas F1 and F2 satisfying K2(F ) � K2(Fi) � 5 (i =1; 2).PROOF. Note that by Lemma 7 and the onditions of steps (A1){(A6), atstep (A7) the formula F ontains only variables of weight three. Therefore,K2(F ) � K2(F [v℄) = 3 and the formula F [v℄ must ontain two variables uand w suh that u has weight exatly two and w has weight either one or two(note that F does not ontain small losed subformulas). We now show howto �nd transformation rules that produe from F [v℄ a formula F1 suh thatK2(F1)�K2(F [v℄) � 2. (Modifying the formula F [v℄ into F2 an be handledidentially.)First apply Tann to F [v℄ as long as possible. If we an now apply Tpure orTdom to u then we are done, sine this eliminates 2-lauses of weight two.Otherwise, we an apply Trare or TDP to u whih eliminates 2-lauses ofweight one or two and, if it eliminates a 2-lause of weight only one, then itleaves w ourring in 2-lauses of weight one or two (see Lemma 7). Hene,we an now apply transformation rules to w that eliminate another 2-lauseof weight one. �12



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Using the above lemmas, we are now ready to prove our main result:Theorem 10 Given a formula F in 2-CNF, Algorithm 1 �nds OptVal(F ) intime poly(jF j) � 2K2=5, where K2 is the total weight of 2-lauses in F and jF jis the length of representation of the input.PROOF. Running time. Eah of the transformation rules Tpure, Tann, TDP,Tdom, Tsmall, and Trare takes polynomial time and does not inrease the totalweight of non-T-lauses. When the ondition of a rule is satis�ed, the ruledereases the total weight of non-T-lauses. Thus, the transformation rulesare exeuted a polynomial number of times during step (A1).After applying transformation rules to F , Algorithm 1 makes two reursivealls for formulas with smaller total weight of 2-lauses (unless F beomestrivial) in one of the steps (A3), (A4), (A5), (A6), or (A7). Clearly, the totalrunning time of the algorithm is the total running time of the two reursivealls plus a polynomial time spent to make these alls. Therefore, the runningtime is within a polynomial fator of the number of nodes (or leaves) of thereursion tree. In the following we show that the number �(K2) of these leavesfor a formula F with K2 2-lauses is O(2K2=5).First onsider a formula F with K2 2-lauses that fores our algorithm tomake a reursive all at step (A3), (A4), (A6), or (A7). The number of leavesin the reursion tree orresponding to this formula is at most 2�(K2�5). If allnodes of our tree for the input formula would be of this type, then we wouldhave a straightforward 2K2=5 bound on the number of leaves.However, there may be also reursive alls at step (A5). At �rst glane, thenumber of leaves in a tree orresponding to suh a all is bounded only by2�(K2�4). To avoid worsening our bound, we prove below that, for most suhformulas, we still have 2�(K2 � 5) leaves and a di�erent \odd" formula anour at most one on eah path from the root to a leaf. They an inrease thesize of the tree at most by a fator of 4. Therefore, we get the desired bound.We now prove this laim about (A5). What may ause the appliation of (A5)to a formula F ? In priniple, F may be the input, F an originate from atransformation rule in (A1), or from a reursive all at steps (A3), (A4), (A5),(A6), or (A7).If F originated from applying a transformation rule at step (A1), then wehave the desired bound on the number of leaves, sine the transformation ruleredues K2 at least by 1 and (A5) then redues it by 4 (in both branhes).Note that F annot originate from (A3), sine (A3) adds weight one variablesto eah of the two produed formulas. Suh F also annot originate from (A5):13



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Setting the truth value of a variable learly implies that, afterwards, anothervariable has weight 1, 2, or 3, beause, at step (A5), F does not have non-trivial losed subformulas. It also annot originate from (A7), sine at thisstep the formula ontains only variables of weight three, and weights annotinrease.If F originated from (A4), then we do not need to worry, beause this anhappen only one on eah path in the reursion tree from the root to one ofits leaves (note that weights never inrease and, thus, none of the suessorswill have a variable of weight greater than 4).Finally, we show that F ould not originate from (A6). Assume that it did. LetG be the formula from whih F originated. Then, F would ontain a variableof weight one, two or three whih ontradits the assumption that it ontainsonly variables of weight four.Corretness. The orretness of transformation rules Tpure, Tann, TDP, Tdom,Tsmall, and Trare is shown in Setion 3. The orretness of steps (A2){(A5)is trivial. At steps (A6) and (A7), we an �nd an appropriate variable v anddetermine orret transformation rules by Lemmas 8 and 9 respetively. �In the ase of unweighted 12 MAX-2-SAT, we have L � 2K2. This diretlyimplies the following orollary.Corollary 11 Given a formula F in unweighted 2-CNF of length L, Algo-rithm 1 �nds OptVal(F ) in time poly(L) � 2L=10.Remark 12 Of ourse, in Corollary 11, only the number of literal ourrenesin 2-lauses is essential in the exponent.Remark 13 Algorithm 1 an be easily redesigned so that it �nds the optimalassignment (or one of them, if there are several assignments satisfying thesame number of lauses) instead of only OptVal(F ).5 Appliation to MAX-CUTOur results an be applied to other NP-omplete problems that are easilyreduible to MAX-2-SAT. For instane, we onsider the NP-omplete graphproblem MAX-CUT: Given an undireted graph G = (V;E) where edgesare assigned integer weights, we ask for a ut of maximum weight, i.e., fora partition of V into V1 and V2 suh that we maximize the sum of weights12 In other words, all weights equal 1. 14



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003over those edges (s; t) 2 E for whih s 2 V1 and t 2 V2. For a survey onMAX-CUT refer to Poljak and Tuza [33℄. We an easily redue MAX-CUTto MAX-2-SAT. The resulting formulas expose a very speial struture. Afterpresenting the redution, we formulate, in the following, a ondition that triesto apture this struture. We take advantage of it, and re�ne the analysis ofAlgorithm 1 when proessing these formulas. Thereby, we improve the bounds,ompared to the general ase, and derive upper bounds for MAX-CUT.For the redution of MAX-CUT to MAX-2-SAT [33℄, we translate a graphG = (V;E) into a 2-CNF formula having the verties as variables and havinglause set C = f (w; fi; jg) j edge (i; j) 2 E having weight w g[ f (w; f�i; �jg) j edge (i; j) 2 E having weight w g:In this way, a graph having n verties and m edges of total weight M resultsin a formula having n variables and 2m lauses of total weight 2M . All theselauses are 2-lauses. The graph G has a ut of weight k i� the formula hassimultaneously satis�able lauses of weight M + k; every optimal assignmentto the formula translates into a maximum ut, namely with all verties or-responding to satis�ed variables on one side and all verties orrespondingto falsi�ed variables on the other side. An assignment satisfying a maximumnumber of lauses in the resulting formula will satisfy at least one of the lauses(w; fi; jg) and (w; f�i; �jg), whih are reated for an edge (i; j) of weight w, butwill satisfy both lauses only if the edge is in the ut.As we an see, the formulas reated by this redution initially exhibit a har-ateristi struture whih we all MAX-CUT Condition:For eah 2-lause of weight w ontaining literals x and y, thereis also a 2-lause of weight w ontaining literals �x and �y. (MCC)In the following, we show that the steps applied by Algorithm 1 preserve thisstruture of the formulas.Lemma 14 Let a formula satisfy (MCC). After applying a transformationrule or after assigning a value to a variable, the formula still ful�lls (MCC).PROOF. For assigning a value to a variable, the laim is trivial; the 2-lausesof the new formula are exatly those 2-lauses of the old formula that do notontain the assigned variable. To prove the rest of this statement, we showfor all transformation rules that, applied to a formula satisfying (MCC), theypreserve this property. Rule Trare, however, annot apply at all to formulashaving (MCC). To apply this rule, we would need a literal x ourring in 2-15



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003lauses of weight two without �x ourring in any 2-lauses. This ontradits(MCC).When applying rules Tpure and Tdom, we simply assign values to ertainvariables. Hene, the above disussion shows that these rules preserve (MCC).Rule Tann does not a�et the 2-lauses and, thus, does no harm to (MCC).As the statement formulated in (MCC) is valid or not only within a losedsubformula, rule Tsmall also does not violate the property.Only regarding TDP, it is not so obvious that the rule maintains (MCC).Let a variable x have ourrenes in 2-lauses only in lauses (w1; fx; l1g) and(w2; f�x; l2g). We infer from (MCC) that l2 = �l1. Therefore, TDP replaes thesetwo lauses with (w1 + w2;T) and, thus, (MCC) is not violated. �To simplify the following proof of the worst-ase time bound, we slightly mod-ify Algorithm 1: step (A3) now does not add new variables and makes areursive all diretly for H1 and H2; steps (A4), (A5) and (A6) are omitted;and at step (A7), the inequality now requires K2(F )�K2(Fi) � 6 (thus, weannot use Lemma 9 and will have to show again how to �nd an appropriatevariables and transformation rules).We observe that the modi�ations overed in Lemma 14 are exatly those ap-plied by our algorithm to the input formula while proessing it. We onludethat the speial struture of the formula is preserved in every step of the algo-rithm. Compared with arbitrary formulas, the number of possible ourrenepatterns for a variable is, thereby, redued. Using this, we an improve theanalysis of Algorithm 1 when the input is a formula satisfying (MCC).Theorem 15 Given a formula F in 2-CNF satisfying (MCC), the modi�edAlgorithm 1 �nds OptVal(F ) in time poly(jF j) � 2K2=6, where K2 is the totalweight of 2-lauses in F and jF j is the length of representation of the input.PROOF. In the proof of Theorem 10, we have seen that every step of thereursion takes polynomial time. The size of the splitting tree is now guaran-teed by the onditions of the steps of the modi�ed algorithm. It remains toprove that an appropriate variable and transformation rules at the modi�edstep (A7) an be found.In Lemma 14, we have shown that every step of Algorithm 1 (and also of itsmodi�ed version) preserves (MCC). Thus, we an assume that every node ofour splitting tree is labeled by a formula satisfying (MCC). Note that (MCC)implies that F does not ontain variables of odd weights. Also, it does not on-tain variables of weight two (Lemma 7(1)), beause these are handled by thetransformation rules. Therefore, every formula labeling a node of our splitting16



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003tree either ontains a variable of weight at least six (this diretly implies therequired inequality K2(F )� K2(Fi) � 6 for i = 1; 2), or eah of its variablesis of weight exatly four. We now prove that, even in this ase, we an �ndtransformation rules suh as to ful�ll the required inequality.Take any lause of literals a and b orresponding to variables x and y. Thislause has to have weight one: If it would have weight two, (MCC) wouldimply that there is also a lause (2; fa; bg) and, thus, there are no other 2-lauses ontaining variables x and y. In this situation, however, Tsmall wouldapply. Therefore, (MCC) implies that there is another literal  (orrespondingto a variable z) suh that there are, besides (1; fa; bg), also lauses (1; f�a;�bg),(1; fa; g), and (1; f�a; �g). Assigning a value to x eliminates four 2-lauses andauses Tdom to apply to y and z (again by (MCC)). This eliminates two more2-lauses beause, otherwise, x; y, and z would form a small losed subformulaof F . Summarizing, we have that we an always ful�ll the modi�ed inequalityof the step (A6). �Theorem 15 gives an upper bound for the running time of the modi�ed algo-rithm on 2-CNF formulas derived from MAX-CUT instanes. We now trans-late this result into numbers of verties and edges of a graph.Corollary 16 Given a graph G having n verties and edges of total weightM , we an solve (weighted) MAX-CUT in time poly(jGj) � 2M=3, where jGj isthe length of representation of the input. If an unweighted graph has maximumvertex degree three, then MAX-CUT is solvable in time poly(jGj) � 2n=2, andif the graph has maximum vertex degree four, it is solvable in time poly(jGj) �22n=3.PROOF. Generating 2-CNF formulas fromMAX-CUT instanes, i.e., graphswith n verties and edges of total weightM , gives 2-lauses of total weight 2Mwith n di�erent variables. Then, the bound shown in Theorem 15 translatesinto a bound of poly(jGj) � 22M=6 = poly(jGj) � 2M=3 with respet to the totalweight of the edges. The other two bounds follow from the inequalitym � dn=2relating n to the number m of edges and the maximum degree d. �6 Disussion and open questionsOur bounds vs parameterized bounds. In this paper, we proved theupper bound of the order 2K2=5 for MAX-2-SAT with positive integer weights,where K2 is the total weight of 2-lauses of the input formula (or the num-ber of 2-lauses for unweighted MAX-2-SAT) and L is the number of literal17



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003ourrenes. This implies the bound 2L=10 for unweighted MAX-2-SAT. Fromthis, we also derived upper bounds for MAX-CUT.Our bounds depend neither on the weight of an optimal solution nor on a re-quired minimal weight of solution. In ontrast, beginning from [8,16,28℄, therehas been muh researh for parameterized bounds for MAX-SAT, MAX-2-SATand MAX-CUT: in terms of k, how muh time do we need to �nd a solutionof weight at least k? For MAX-SAT, Bansal and Raman [4℄ give the bestknown parameterized bound 2k=2:15 whih is better than their \unparameter-ized" bound 2K=2:36 when k < 0:92K, where K is the total weight of all lauses.In [19℄, the parameterized bound 2k=2:73 for MAX-2-SAT has been proved.However, our present \unparameterized" bound 2K2=5, where K2 is the totalweight of 2-lauses, is better for all reasonable values of k: the parameter-ized bound is better only when k < 0:55K2, while an assignment satisfying0:5K+0:25K2 � 0:75K2 lauses an be found in a polynomial time [28,38℄. Itseems like the idea of ounting only 2-lauses does not work for parameterizedbounds.As dK=2e lauses an be easily satis�ed, Mahajan and Raman [28℄ propose toask in the parameterized version of the problem for an assignment satisfyingdK=2+k0e lauses. Taking the parameterized bound shown in [19℄ and pluggingit into the results by Mahajan and Raman, we an translate it into a boundwith respet to this new parameter k0; in time 26k0=2:73 = 2k0=0:45 one an �ndan assignment to the variables that satis�es at least dK=2+k0e lauses or onean determine that no suh assignment exists. However, for k0 � dK2=4e, thisquestion still an be handled in polynomial time. Comparing for k0 > dK2=4ethe bound 2k0=0:45 to the bound shown for Algorithm 1, we see, again, that theparameterized bound is worse for every parameter value.It would be interesting, however, to onsider, for a given k00, the parameterizedomplexity of the question whether there is an assignment satisfying dK=2 +K2=4e+ k00 lauses.Possible appliations of our ideas. The key idea of our MAX-2-SAT al-gorithm is to ount only 2-lauses (we an do this, sine MAX-1-SAT instanesare trivial). It would be interesting to apply this idea to SAT, for example,by ounting only 3-lauses in 3-SAT (sine 2-SAT instanes are easy). Also, itwould be interesting to apply our idea of handling \bottlenek" ases to theanalysis of other algorithms with suh ases [23,30℄. Also, it remains a hallengeto �nd a \less-than-2N" algorithm for MAX-SAT, or even for MAX-2-SAT,where N is the number of variables. (Note that for any �xed � > 0, an as-signment satisfying (1� �)OptVal(F ) lauses of a formula F in k-CNF an befound in randomized N time, where  < 2 is a onstant depending only on kand � [24℄.) 18
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