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tionWorst-
ase upper bounds for NP-hard problems. Various NP-hardoptimization problems arise naturally in many areas of 
omputer s
ien
e whileno polynomial-time algorithms for them are known. For some of these prob-lems, there are polynomial-time approximation algorithms that give solutionswithin a fa
tor of some performan
e ratio � of the optimal solution. However,for those problems that are MAX-SNP-hard (see, e.g., [1,3,31℄), it is knownthat the performan
e ratio of a polynomial-time algorithm 
annot be betterthan some 
onstant � (inapproximability ratio) unless P = NP. For exam-ple, for MAX-2-SAT (for formal de�nitions, see below), � = 0:931 [17℄ and� = 0:955 [20℄.Re
ently, there was an explosion in proving (exponential) worst-
ase time up-per bounds for NP-hard problems and, in parti
ular, for the exa
t solutionof MAX-SNP-hard problems. Most results in the area 
on
entrate aroundSAT, the problem of satis�ability of a propositional formula in 
onjun
tivenormal form (CNF ), whi
h 
an be easily solved in time of the order 2N ,where N is the number of variables in the input formula. In the early 1980s,this trivial bound was improved for formulas in 3-CNF (every 
lause 
ontainsat most three literals) by Monien and Spe
kenmeyer [29℄ and independentlyby Dantsin [10℄ (e.g., a 2N=1:44 bound 5 was proved). After that, many up-per bounds for SAT [23,27℄, k-SAT [12,13,26,32,36,37℄, MAX-SAT [4,28,30℄,MAX-2-SAT [4,30℄, and other NP-hard problems were obtained.Previous resear
h and our results. Con
erning the problems for formu-las in CNF, most authors 
onsider bounds w.r.t. three main parameters:� the length L of the input formula (i.e., the number of literal o

urren
es),� the number K of its 
lauses, and� the number N of the variables o

urring in it.The best 
urrently known bounds for SAT are 2K=3:23 and 2L=9:7 [23℄, while,w.r.t. the number of variables, nothing better than trivial 2N is known. In
onstrast, for 3-SAT, randomized 1:3303N [37℄ and deterministi
 1:481N [12,13℄are known, while the bounds w.r.t. K and L are the same as for SAT.The maximum satis�ability problem (MAX-SAT ) is an important general-ization of SAT. Here, we are given a formula in CNF, and the answer isthe maximum number of simultaneously satis�able 
lauses. This problem is5 For brevity, we usually omit a polynomial fa
tor in this paper: e.g., if we write2N=1:44, we mean poly(jF j) � 2N=1:44, where jF j is the length of representation of theinput. 2
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omplete 6 and MAX-SNP-
omplete, even if ea
h 
lause 
ontains atmost two literals (MAX-2-SAT ; see, e.g., [31, Theorem 13.11℄). MAX-SATand MAX-2-SAT are well-studied in the 
ontext of approximation algorithms(see, e.g., [2,11,17,20,25,38℄). Re
ently, numerous results appeared in the do-main of worst-
ase time bounds for the exa
t solution of MAX-SAT andMAX-2-SAT [4,11,19,21,22,28,30℄. The 
urrently best bounds for MAX-SATare 2K=2:36 and 2L=6:89 [4℄. For MAX-2-SAT, the 
onsiderably better bounds2K=2:88 [30℄ and 2K=3:44 (impli
it in [4℄) follow from MAX-SAT algorithms. Inthis paper we prove a mu
h better 2K=5 bound by giving a dire
t (and mu
hsimpler!) algorithm for MAX-2-SAT. Our result still holds if K in the expo-nent is the number of 2-
lauses (i.e., unit 
lauses are not 
ounted). Therefore,the bound 2L=10 follows, whi
h is the �rst bound w.r.t. L that is better forMAX-2-SAT than for MAX-SAT.Using our MAX-2-SAT algorithm, we obtain the bound 2M=3 for the MAX-CUTproblem (given a graph with M edges, �nd a 
ut of maximum size in it). Thisis of parti
ular interest for graphs with bounded degree: If the maximum ver-tex degree is 3, then MAX-CUT 
an be solved in time 2n=2 (where n is thenumber of verti
es) and, if the maximum vertex degree is 4, then MAX-CUT
an be solved in time 22n=3. For larger degree d � 5, our algorithm does notimprove a simple 2nd=(d+1) bound [39℄. We are not aware of previous non-trivialworst-
ase upper bounds for the exa
t solution of MAX-CUT, ex
ept for theparameterized bounds given by Mahajan and Raman [28℄. Their results are abound of 22k for the question of whether a given graph has a 
ut of size k, anda bound of 24k for the question of whether a given graph with m edges has a
ut of size dm2 e+ k.Our results w.r.t.K and w.r.t.M also hold for the versions of MAX-2-SAT andMAX-CUT where ea
h 
lause (or edge, resp.) is assigned an integer weight. Inthis 
ase, K and M in the above bounds denote the total weight of all 
lauses(resp., edges).Splitting algorithms. Most of the algorithms 
orresponding to the boundsmentioned above, as well as the algorithms presented in this paper, use akind of Davis-Putnam-Logemann-Loveland pro
edure [14,15℄. In short, thispro
edure redu
es the problem for a formula F to the problem for two formulasF [v℄ and F [v℄ (where v is a propositional variable). This is 
alled \splitting".Before the algorithm splits ea
h of the obtained two formulas, it 
an transformthem into simpler formulas F1 and F2 using transformation rules . In a splittingtree 
orresponding to the exe
ution of su
h an algorithm, the node labeled byF has two 
hildren labeled by F1 and F2. The algorithm does not split a6 A more pre
ise NP-formulation is, of 
ourse, \given a formula in CNF and aninteger k, de
ide whether there is an assignment that satis�es at least k 
lauses."3



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003formula if it is trivial to solve the problem for it; these formulas are the leavesof the splitting tree. The running time of the algorithm is within a poly(jF j)fa
tor of the number of leaves.Sour
es of our improvements. Our MAX-2-SAT algorithm is a typi
alsplitting algorithm, i.e., to des
ribe it we need to spe
ify: a set of formulas
orresponding to the leaves of our tree, a heuristi
 determining the 
hoi
e ofa variable for splitting, and transformation rules. Worst-
ase analysis of su
halgorithms usually 
ontains a huge amount of 
ase enumeration. The numberof 
ases we need to 
onsider in our proof is tremendously smaller than inthe 
urrent results for general MAX-SAT [4,30℄. Our MAX-2-SAT algorithmmakes use of two main ideas.The leaves of our splitting tree are formulas 
ontaining only unit 
lauses(
learly, MAX-1-SAT is trivial). Therefore, in the analysis of the running timeof our algorithm we 
ount only 2-
lauses. We prove that every variable o

ur-ring in at most two 7 2-
lauses (and maybe some 1-
lauses) 
an be eliminatedin polynomial time 8 . If there is a variable o

urring in three 2-
lauses, thenwe 
an make a splitting su
h that ea
h of the formulas F1 and F2 has atleast �ve 2-
lauses less than F (this situation 
orresponds to the re
urren
einequality T (K) � 2T (K � 5) for the running time). Clearly, we 
an say thesame about F 
ontaining a variable o

urring in at least �ve 2-
lauses. If oursplitting tree 
ontains only formulas of these types, then the running time is atmost 2K=5. The remaining 
ase, i.e., only variables o

urring in four 2-
lauses,
orresponds to the re
urren
e inequality T (K) � 2T (K � 4).The se
ond idea is 
onne
ted to a general point in splitting algorithms forNP-hard problems: usually, a problem has \bottlene
k" instan
es, i.e., theinstan
es 
orresponding to the \worst" re
urren
e inequality. For example, forthe algorithm des
ribed above, these are the formulas for whi
h our splitting
orresponds to the inequality T (K) � 2T (K � 4). Usually, this situationis handled by looking to the next level of splitting and showing that theobtained two instan
es are not \bottlene
k" [23,30℄ whi
h gives an inequalitywith an \intermediate" solution. In this paper, we handle this situation in adi�erent way. Namely, we show that we 
an build a splitting tree su
h thatea
h bran
h 
ontains at most one \bottlene
k" instan
e. Therefore, we 
anomit the 
orresponding re
urren
e inequality from asymptoti
 analysis.For the MAX-CUT problem, there is an easy translation of any of its instan
es7 For simpli
ity, we give here our ideas in the unweighted 
ase.8 In fa
t, it follows easily that MAX-2-SAT is solvable in polynomial time whenevery variable o

urs in at most two 2-
lauses (and maybe some 1-
lauses). Notethat MAX-2-SAT is NP-
omplete and MAX-SNP-
omplete, even if the numberof o

urren
es of every variable is bounded by three (see, e.g., [6,34℄).4



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003with M edges into a MAX-2-SAT instan
e with 2M 
lauses. This would al-ready give us a 22M=5 bound. However, the formulas given by the translationsatisfy a very spe
i�
 
ondition. Moreover, this 
ondition is preserved by ourtransformation rules. For su
h formulas, our algorithm runs with small modi-�
ations in the time 2K=6, i.e., MAX-CUT 
an be solved in the time 2M=3.History of the paper. The present work started from [18,19,21,22℄, whereparts of the ideas of this paper already appeared. The authors thank DIMACSfor �nan
ial support that gave them an opportunity to meet at the DIMACSWorkshop \Faster Exa
t Algorithms for NP-Hard Problems," where the ideasfrom earlier dis
ussions between them were implemented into better algo-rithms with signi�
antly better bounds.Organization of the paper. Our paper is organized as follows. In Se
-tion 2, we give basi
 de�nitions. In Se
tion 3, we des
ribe the transformationrules we use. In Se
tion 4, we present our new MAX-2-SAT algorithm andits analysis. Se
tion 5 shows the appli
ation to MAX-CUT. Con
lusions, openquestions, and 
omparison to 
losely related resear
h are given in Se
tion 6.2 Ba
kgroundLet V be a set of Boolean variables. The negation of a variable v is denoted byv. Literals are variables and their negations. If l denotes a negated variable v,then l denotes the variable v.Algorithms for �nding the exa
t solution of MAX-SAT are usually designedfor the unweighted MAX-SAT problem. However, the formulas are usuallyrepresented by multisets (i.e., formulas in CNF with positive integer weights).In this paper, we 
onsider the weighted MAX-SAT problem with positiveinteger weights. A (weighted) 
lause is a pair (!; S) where ! is a stri
tlypositive integer number and S is a nonempty �nite set of literals whi
h doesnot 
ontain, simultaneously, any variable together with its negation. We 
all! the weight of a 
lause (!; S).An assignment is a �nite set of literals that does not 
ontain any variabletogether with its negation. Informally speaking, if an assignment A 
ontains aliteral l, then the literal l has the value True in A. In addition to usual 
lauses,we allow a spe
ial true 
lause (!;T) whi
h is satis�ed by every assignment.(We also 
all it a T-
lause.) 5



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003The length of a 
lause (!; S) is the 
ardinality of S. A k-
lause is a 
lauseof length exa
tly k. In this paper, a formula in (weighted) CNF (or simplyformula) is a �nite set of (weighted) 
lauses (!; S), with at most one 
lausefor ea
h S. If a formula 
ontains only one 
lause, for short we write this 
lauseinstead of the formula. A formula is in 2-CNF if it 
ontains only 2-
lauses,1-
lauses and a T-
lause. The length of a formula is the sum of the lengths ofall its 
lauses. The total weight of all 2-
lauses of a formula F is denoted byK2(F ) and by K2 when the formula is 
lear from the 
ontext.The pairs (0; S) are not 
lauses: for simpli
ity, however, we write (0; S) 2 Ffor all S and all F . Thus, the operators + and � are de�ned:F +G= f(!1 + !2; S) j (!1; S) 2 F and (!2; S) 2 G; and !1 + !2 > 0g;F �G= f(!1 � !2; S) j (!1; S) 2 F and (!2; S) 2 G; and !1 � !2 > 0g:In other words, + and � denote the union and the di�eren
e of formulas
onsidered as multisets of 
lauses.Example 1 If F = f (2;T); (3; fx; yg); (4; fx; yg) gand G = f (2; fx; yg); (4; fx; yg) g;then F �G = f (2;T); (1; fx; yg) g: �For a literal l and a formula F , the formula F [l℄ is obtained by setting thevalue of l to True. More pre
isely, we de�neF [l℄ = f(!; S) j (!; S) 2 F and l; l =2 Sg+f(!; S n f l g) j (!; S) 2 F and S 6= f l g and l 2 Sg+f(!;T) j ! is the sum of the weights !0of all 
lauses (!0; S) of F su
h that l 2 Sg:(Note that no (!; ;) or (0; S) is in
luded in F [l℄, F + G or F � G.) For anassignment A = fl1; : : : ; lsg and a formula F , we de�ne F [A℄ = F [l1℄[l2℄ : : : [ls℄6



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003(evidently, F [l℄[l0℄ = F [l0℄[l℄ for every pair of literals l; l0 with l 6= l0). For short,we write F [l1; : : : ; ls℄ instead of F [fl1; : : : ; lsg℄.Example 2 IfF = f (1;T); (1; fx; yg); (5; fyg); (2; fx; yg); (10; fzg); (2; fx; zg) g;then F [x; z℄ = f (12;T); (7; fyg) g: �The optimal value of a maximum weight assignment for formula F is de�nedas OptVal(F ) = maxAf! j (!;T) 2 F [A℄ g, where A is taken over all possibleassignments. An assignment A is optimal if F [A℄ 
ontains only one 
lause(!;T) (or does not 
ontain any 
lause, in this 
ase ! = 0) and OptVal(F ) =! (= OptVal(F [A℄) ).If we say that a literal l o

urs in a 
lause or in a formula, we mean that this
lause (more formally, its se
ond 
omponent) or this formula (more formally,one of its 
lauses) 
ontains the literal l. However, if we say that a variable vo

urs in a 
lause or in a formula, we mean that this 
lause or this formulaeither 
ontains the literal v or it 
ontains the literal v.For a literal l, we write #l(G) to denote the total weight of the 
lauses ofa formula G in whi
h l o

urs. We omit G when the meaning of G is 
learfrom the 
ontext. We also write #(k)l to denote the total weight of k-
lausesin whi
h l o

urs. The weight of a variable is the total sum of the weights ofthe 2-
lauses the variable o

urs in.A 
losed subformula G is a subset of a formula F su
h that none of thevariables o

urring in G o

urs in F �G. We use this term only for non-trivialsubformulas, i.e. both G and F �G 
ontain at least one variable.3 Transformation rulesA 
orre
t transformation rule repla
es a formula F with a \simpler" formula F 0su
h that F has an optimal assignment with weight ! i� F 0 has an optimalassignment with weight !, i.e., a 
orre
t transformation rule preserves OptVal.In this se
tion, we present the transformation rules we use and show their
orre
tness. Note that these rules in
rease neither the weight of any variablenor the total weight of the 2-
lauses. 7



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Pure literal. A literal is pure in a formula F if it o

urs in F , and its nega-tion does not o

ur in F . The following lemma is well-known and straightfor-ward.Lemma 3 If b is a pure literal in F , then OptVal(F ) = OptVal(F [b℄).Rule Tpure repla
es F with F [b℄ if b is a pure literal.Annihilation of 1-
lauses. Rule Tann \annihilates" opposite 1-
lauses,i.e., it repla
es F with (F�f (!; fag) ; (!; fag) g)+(!;T) if F 
ontains 
lauses(!1; fag) and (!2; fag) and ! = min(!1; !2).Resolution. In this paper, the resolvent R(C;D) of two 2-
lauses C =(!1; fl1; l2g) and D = (!2; fl1; l3g) is the formulaf (max(!1; !2); T); (min(!1; !2); fl2; l3g) g (1)if l2 6= l3, and it is the formula f(!1 + !2;T)g, otherwise. This de�nition isslightly non-traditional, but it is very useful in the MAX-SAT 
ontext.The following lemma is a straightforward generalization of a statement aboutusual resolution (see, e.g., [35℄).Lemma 4 If F 
ontains 2-
lauses C = (!1; fv; l1g) and D = (!2; fv; l2g)su
h that the variable v does not o

ur in other 
lauses of F , thenOptVal(F ) = OptVal( (F � fC;Dg) +R(C;D) ): (2)Rule TDP repla
es F with (F �fC;Dg)+R(C;D) if F , C, and D satisfy the
onditions of Lemma 4.Dominating 1-
lause. The following fa
t was observed in [30℄.Lemma 5 ([30℄) If for a literal l and a formula F , #(1)l � #l, thenOptVal(F ) = OptVal(F [l℄): (3)Rule Tdom repla
es F with F [l℄ in su
h a 
ase.8
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losed subformula. We 
an easily 
ompute the optimal value for a
losed subformula G 
ontaining at most, say, 12 variables. Clearly,OptVal(F ) = OptVal(F �G) + OptVal(G): (4)Rule Tsmall repla
es F with (F �G) + (OptVal(G);T) in su
h a 
ase.Rare variable. Let F be a formula, and let a be a literal su
h that #(2)a = 2,#(2)a = #(1)a = 0, and #(1)a = 1. Consider a 2-
lause (!; fa; bg) in F . Rule Trarerepla
es this 
lause with (!;T) and repla
es literal a with literal b and literala with literal b in all other 
lauses.Lemma 6 Rule Trare is 
orre
t.PROOF. Let F 0 be the obtained formula. It is trivial that OptVal(F 0) �OptVal(F ). We now prove the opposite inequality.Let A be an optimal assignment for F . Let b 2 A. Consider F [b℄. Note thatwe 
an apply Tdom to the literal a in this formula, i.e.,OptVal(F ) = OptVal(F [A℄) � OptVal(F [b℄)= OptVal(F [a; b℄) = OptVal(F 0[a; b℄) � OptVal(F 0):Let now b 2 A. Consider F [b℄. Note that we 
an apply Tann and then Tpureto the literal a in this formula, i.e.,OptVal(F ) = OptVal(F [A℄) � OptVal(F [b℄)= OptVal(F [a; b℄) = OptVal(F 0[a; b℄) � OptVal(F 0): �4 A 2K=5-time algorithm for MAX-2-SATIn this se
tion, we present Algorithm 1 whi
h solves MAX-2-SAT in timepoly(jF j) �2K2=5, where K2 is the total weight of 2-
lauses of the input formula(in the 
ase of unweighted MAX-2-SAT,K2 is the number of 2-
lauses) and jF jis the length of representation of the input. We �rst present the algorithm andthen estimate its running time and show its 
orre
tness using several lemmas.9



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Algorithm 1Input: A formula F in weighted 2-CNF.Output: OptVal(F ).Method.(A1) Apply Tpure, Tann, TDP, Tdom, Tsmall, Trare to F as long as at leastone of them is appli
able.(A2) If F 
ontains only a T-
lause, return the weight of this 
lause.(A3) If F 
onsists of several 
losed subformulas, then de
ompose F into two
losed subformulas H1 and H2, apply Algorithm 1 to ea
h of the for-mulas H1 + (1; fu; vg) and H2 + (1; fu; vg) (where u and v are newvariables) 9 , and return OptVal(H1) + OptVal(H2)� 2.(A4) If F 
ontains a variable v of weight at least �ve, then returnmax(OptVal(F [v℄);OptVal(F [v℄)).(A5) If ea
h variable has weight exa
tly four, then 
hoose a variable v andreturn max(OptVal(F [v℄);OptVal(F [v℄)).(A6) If F 
ontains only variables of weight three and weight four, and bothpossibilities are realized, then 
hoose 10 a variable v and determine 
or-re
t transformation rules that modify F [v℄ and F [v℄ into formulas F1and F2 satisfying K2(F )�K2(Fi) � 5 (i = 1; 2) and 
ontaining a vari-able of weight at most three ea
h; return max(OptVal(F1);OptVal(F2)).(A7) Choose 11 a variable v su
h that transformation rules modify F [v℄ andF [v℄ into formulas F1 and F2 satisfying K2(F )�K2(Fi) � 5 (i = 1; 2);return max(OptVal(F1);OptVal(F2)). �We �rst formulate the additional straightforward properties of our transfor-mation rules that we use in our proofs.Lemma 7 Let F be a formula, and let x be a variable of weight one or two.Then repeated appli
ation of transformation rules to x9 For the ease of presentation, we introdu
e new variables u and v not o

urringin F in order to maintain the indu
tion hypothesis in the proof of the followingTheorem 10. Theorem 10 states our main result 
on
erning the 
orre
tness andrunning time of Algorithm 1. Note that omitting these new variables here wouldnot 
hange the behavior of the algorithm, but would make it more involved to provea bound on the worst-
ase running time in Theorem 10.10 Lemma 8 below shows that a variable and transformation rules satisfying therequirements of step (A6) 
an be found in polynomial time.11 Lemma 9 below shows that a variable and transformation rules satisfying therequirements of step (A7) 
an be found in polynomial time.10



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003(1) eliminates this variable from F ;(2) de
reases the total weight of 2-
lauses of F ; and(3) does not 
hange 
lauses that do not 
ontain x (in parti
ular, it does not
hange the weights of the variables that do not o

ur together with x in a
lause).The following two lemmas address spe
ial 
ases that will be needed in ourmain theorem whi
h states the 
orre
tness of Algorithm 1 and proves the
laimed running time. Lemma 8 shows how to �nd an appropriate variableand transformation rules at step (A6) of the algorithm. Lemma 9 shows thesame for step (A7).Lemma 8 Let F be a formula su
h that there are no 
losed subformulas andall variables are of weight either three or four, where both these possibilities arerealized. Furthermore, let us assume that no transformation rule is appli
able.Then, we 
an �nd a variable v and determine 
orre
t transformation rules thatmodify the formulas F [v℄ and F [v℄ into formulas F1 and F2 su
h that for ea
hi = 1; 2,(1) K2(F )�K2(Fi) � 5, and(2) Fi 
ontains a variable of weight exa
tly one, two, or three.PROOF. Let x be a variable of weight three and let y be a variable of weightfour. Furthermore, let x and y o

ur together in a 
lause. Su
h variables mustexist, sin
e there are no 
losed subformulas.As a spe
ial 
ase, let us �rst assume that there is a variable v (v = x is possible)of weight three that only o

urs in the 2-
lauses where y o

urs. Then, takethe variable z (z = x is possible) that only o

urs together with y in a 
lauseof weight one and look at F [z℄ and F [�z℄: In both formulas, all 
lauses that
ontain y form a small 
losed subformula. Hen
e, we apply Tsmall to F [z℄ andF [�z℄, resulting in F1 and F2. In this way, K2(F ) � K2(Fi) � 6 for i = 1; 2,be
ause we 
an eliminate all 2-
lauses 
ontaining the variables y and z. If
laim (2) is violated, i.e., Fi only 
ontains variables that o

ur at least fourtimes in 2-
lauses, then we repla
e Fi with Fi� (1;T)+(1; fu1; u2g), where u1and u2 are new variables (
learly, this modi�
ation is a 
orre
t transformationrule). Note that we 
an \subtra
t" (1;T) be
ause we 
an \spend" one of the T-
lauses that appear due to the last substitution: sin
e we hadK2(F )�K2(Fi) �6 before, we have K2(F ) � K2(Fi) � 5 after the modi�
ation, and 
laim (1)is still true. Note that u1 now ful�lls 
laim (2).If the previous spe
ial 
ase does not apply, then x o

urs in F [y℄ in 2-
lausesof weight one or two. We now produ
e a formula F1 from F [y℄ by applyingtransformation rules to x in F [y℄ until x is eliminated. To ful�ll 
laim (2),11
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an 
hoose any variable z o

urring together with y, and o

urring alsotogether with a variable di�erent from x and y. Note that if su
h z exists, thenit has weight at most three in F [y℄, but still has at least one o

urren
e theretogether with a variable di�erent from x. Therefore, by Lemma 7(3), after theelimination of x, the variable z still o

urs in the formula and has weight atmost three.Suppose now that su
h z does not exist. Then it 
annot be the 
ase that yo

urs in 2-
lauses together with x and at least two other variables, be
auseone of the latter variables would have an o

urren
e together with a variabledi�erent from x and y. We now have that y o

urs in 2-
lauses together withx and only one other variable z0. Sin
e F 
ontains no 
losed subformulas, ymust o

ur together with z0 in 2-
lauses of total weight three. Sin
e the spe
ial
ase above does not apply, F should 
ontain one more o

urren
e of z0, andthis is an o

urren
e together with x. Let z00 be the variable o

urring in theremaining 2-
lause 
ontaining x. If x is eliminated by TDP or Trare, then z0still o

urs in F1 ful�lling 
laim (2). If, however, x is eliminated by Tpure orTdom, then exa
tly one 2-
lause 
ontaining z00 disappears and therefore z00�l�lls 
laim (2).In the same way, we get F2 from F [�y℄. �Lemma 9 Let F be a formula being split at step (A7). Then for any variablev we 
an �nd in polynomial time transformation rules that modify the formulasF [v℄ and F [v℄ into formulas F1 and F2 satisfying K2(F ) � K2(Fi) � 5 (i =1; 2).PROOF. Note that by Lemma 7 and the 
onditions of steps (A1){(A6), atstep (A7) the formula F 
ontains only variables of weight three. Therefore,K2(F ) � K2(F [v℄) = 3 and the formula F [v℄ must 
ontain two variables uand w su
h that u has weight exa
tly two and w has weight either one or two(note that F does not 
ontain small 
losed subformulas). We now show howto �nd transformation rules that produ
e from F [v℄ a formula F1 su
h thatK2(F1)�K2(F [v℄) � 2. (Modifying the formula F [v℄ into F2 
an be handledidenti
ally.)First apply Tann to F [v℄ as long as possible. If we 
an now apply Tpure orTdom to u then we are done, sin
e this eliminates 2-
lauses of weight two.Otherwise, we 
an apply Trare or TDP to u whi
h eliminates 2-
lauses ofweight one or two and, if it eliminates a 2-
lause of weight only one, then itleaves w o

urring in 2-
lauses of weight one or two (see Lemma 7). Hen
e,we 
an now apply transformation rules to w that eliminate another 2-
lauseof weight one. �12



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003Using the above lemmas, we are now ready to prove our main result:Theorem 10 Given a formula F in 2-CNF, Algorithm 1 �nds OptVal(F ) intime poly(jF j) � 2K2=5, where K2 is the total weight of 2-
lauses in F and jF jis the length of representation of the input.PROOF. Running time. Ea
h of the transformation rules Tpure, Tann, TDP,Tdom, Tsmall, and Trare takes polynomial time and does not in
rease the totalweight of non-T-
lauses. When the 
ondition of a rule is satis�ed, the rulede
reases the total weight of non-T-
lauses. Thus, the transformation rulesare exe
uted a polynomial number of times during step (A1).After applying transformation rules to F , Algorithm 1 makes two re
ursive
alls for formulas with smaller total weight of 2-
lauses (unless F be
omestrivial) in one of the steps (A3), (A4), (A5), (A6), or (A7). Clearly, the totalrunning time of the algorithm is the total running time of the two re
ursive
alls plus a polynomial time spent to make these 
alls. Therefore, the runningtime is within a polynomial fa
tor of the number of nodes (or leaves) of there
ursion tree. In the following we show that the number �(K2) of these leavesfor a formula F with K2 2-
lauses is O(2K2=5).First 
onsider a formula F with K2 2-
lauses that for
es our algorithm tomake a re
ursive 
all at step (A3), (A4), (A6), or (A7). The number of leavesin the re
ursion tree 
orresponding to this formula is at most 2�(K2�5). If allnodes of our tree for the input formula would be of this type, then we wouldhave a straightforward 2K2=5 bound on the number of leaves.However, there may be also re
ursive 
alls at step (A5). At �rst glan
e, thenumber of leaves in a tree 
orresponding to su
h a 
all is bounded only by2�(K2�4). To avoid worsening our bound, we prove below that, for most su
hformulas, we still have 2�(K2 � 5) leaves and a di�erent \odd" formula 
ano

ur at most on
e on ea
h path from the root to a leaf. They 
an in
rease thesize of the tree at most by a fa
tor of 4. Therefore, we get the desired bound.We now prove this 
laim about (A5). What may 
ause the appli
ation of (A5)to a formula F ? In prin
iple, F may be the input, F 
an originate from atransformation rule in (A1), or from a re
ursive 
all at steps (A3), (A4), (A5),(A6), or (A7).If F originated from applying a transformation rule at step (A1), then wehave the desired bound on the number of leaves, sin
e the transformation ruleredu
es K2 at least by 1 and (A5) then redu
es it by 4 (in both bran
hes).Note that F 
annot originate from (A3), sin
e (A3) adds weight one variablesto ea
h of the two produ
ed formulas. Su
h F also 
annot originate from (A5):13
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learly implies that, afterwards, anothervariable has weight 1, 2, or 3, be
ause, at step (A5), F does not have non-trivial 
losed subformulas. It also 
annot originate from (A7), sin
e at thisstep the formula 
ontains only variables of weight three, and weights 
annotin
rease.If F originated from (A4), then we do not need to worry, be
ause this 
anhappen only on
e on ea
h path in the re
ursion tree from the root to one ofits leaves (note that weights never in
rease and, thus, none of the su

essorswill have a variable of weight greater than 4).Finally, we show that F 
ould not originate from (A6). Assume that it did. LetG be the formula from whi
h F originated. Then, F would 
ontain a variableof weight one, two or three whi
h 
ontradi
ts the assumption that it 
ontainsonly variables of weight four.Corre
tness. The 
orre
tness of transformation rules Tpure, Tann, TDP, Tdom,Tsmall, and Trare is shown in Se
tion 3. The 
orre
tness of steps (A2){(A5)is trivial. At steps (A6) and (A7), we 
an �nd an appropriate variable v anddetermine 
orre
t transformation rules by Lemmas 8 and 9 respe
tively. �In the 
ase of unweighted 12 MAX-2-SAT, we have L � 2K2. This dire
tlyimplies the following 
orollary.Corollary 11 Given a formula F in unweighted 2-CNF of length L, Algo-rithm 1 �nds OptVal(F ) in time poly(L) � 2L=10.Remark 12 Of 
ourse, in Corollary 11, only the number of literal o

urren
esin 2-
lauses is essential in the exponent.Remark 13 Algorithm 1 
an be easily redesigned so that it �nds the optimalassignment (or one of them, if there are several assignments satisfying thesame number of 
lauses) instead of only OptVal(F ).5 Appli
ation to MAX-CUTOur results 
an be applied to other NP-
omplete problems that are easilyredu
ible to MAX-2-SAT. For instan
e, we 
onsider the NP-
omplete graphproblem MAX-CUT: Given an undire
ted graph G = (V;E) where edgesare assigned integer weights, we ask for a 
ut of maximum weight, i.e., fora partition of V into V1 and V2 su
h that we maximize the sum of weights12 In other words, all weights equal 1. 14
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h s 2 V1 and t 2 V2. For a survey onMAX-CUT refer to Poljak and Tuza [33℄. We 
an easily redu
e MAX-CUTto MAX-2-SAT. The resulting formulas expose a very spe
ial stru
ture. Afterpresenting the redu
tion, we formulate, in the following, a 
ondition that triesto 
apture this stru
ture. We take advantage of it, and re�ne the analysis ofAlgorithm 1 when pro
essing these formulas. Thereby, we improve the bounds,
ompared to the general 
ase, and derive upper bounds for MAX-CUT.For the redu
tion of MAX-CUT to MAX-2-SAT [33℄, we translate a graphG = (V;E) into a 2-CNF formula having the verti
es as variables and having
lause set C = f (w; fi; jg) j edge (i; j) 2 E having weight w g[ f (w; f�i; �jg) j edge (i; j) 2 E having weight w g:In this way, a graph having n verti
es and m edges of total weight M resultsin a formula having n variables and 2m 
lauses of total weight 2M . All these
lauses are 2-
lauses. The graph G has a 
ut of weight k i� the formula hassimultaneously satis�able 
lauses of weight M + k; every optimal assignmentto the formula translates into a maximum 
ut, namely with all verti
es 
or-responding to satis�ed variables on one side and all verti
es 
orrespondingto falsi�ed variables on the other side. An assignment satisfying a maximumnumber of 
lauses in the resulting formula will satisfy at least one of the 
lauses(w; fi; jg) and (w; f�i; �jg), whi
h are 
reated for an edge (i; j) of weight w, butwill satisfy both 
lauses only if the edge is in the 
ut.As we 
an see, the formulas 
reated by this redu
tion initially exhibit a 
har-a
teristi
 stru
ture whi
h we 
all MAX-CUT Condition:For ea
h 2-
lause of weight w 
ontaining literals x and y, thereis also a 2-
lause of weight w 
ontaining literals �x and �y. (MCC)In the following, we show that the steps applied by Algorithm 1 preserve thisstru
ture of the formulas.Lemma 14 Let a formula satisfy (MCC). After applying a transformationrule or after assigning a value to a variable, the formula still ful�lls (MCC).PROOF. For assigning a value to a variable, the 
laim is trivial; the 2-
lausesof the new formula are exa
tly those 2-
lauses of the old formula that do not
ontain the assigned variable. To prove the rest of this statement, we showfor all transformation rules that, applied to a formula satisfying (MCC), theypreserve this property. Rule Trare, however, 
annot apply at all to formulashaving (MCC). To apply this rule, we would need a literal x o

urring in 2-15
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lauses of weight two without �x o

urring in any 2-
lauses. This 
ontradi
ts(MCC).When applying rules Tpure and Tdom, we simply assign values to 
ertainvariables. Hen
e, the above dis
ussion shows that these rules preserve (MCC).Rule Tann does not a�e
t the 2-
lauses and, thus, does no harm to (MCC).As the statement formulated in (MCC) is valid or not only within a 
losedsubformula, rule Tsmall also does not violate the property.Only regarding TDP, it is not so obvious that the rule maintains (MCC).Let a variable x have o

urren
es in 2-
lauses only in 
lauses (w1; fx; l1g) and(w2; f�x; l2g). We infer from (MCC) that l2 = �l1. Therefore, TDP repla
es thesetwo 
lauses with (w1 + w2;T) and, thus, (MCC) is not violated. �To simplify the following proof of the worst-
ase time bound, we slightly mod-ify Algorithm 1: step (A3) now does not add new variables and makes are
ursive 
all dire
tly for H1 and H2; steps (A4), (A5) and (A6) are omitted;and at step (A7), the inequality now requires K2(F )�K2(Fi) � 6 (thus, we
annot use Lemma 9 and will have to show again how to �nd an appropriatevariables and transformation rules).We observe that the modi�
ations 
overed in Lemma 14 are exa
tly those ap-plied by our algorithm to the input formula while pro
essing it. We 
on
ludethat the spe
ial stru
ture of the formula is preserved in every step of the algo-rithm. Compared with arbitrary formulas, the number of possible o

urren
epatterns for a variable is, thereby, redu
ed. Using this, we 
an improve theanalysis of Algorithm 1 when the input is a formula satisfying (MCC).Theorem 15 Given a formula F in 2-CNF satisfying (MCC), the modi�edAlgorithm 1 �nds OptVal(F ) in time poly(jF j) � 2K2=6, where K2 is the totalweight of 2-
lauses in F and jF j is the length of representation of the input.PROOF. In the proof of Theorem 10, we have seen that every step of there
ursion takes polynomial time. The size of the splitting tree is now guaran-teed by the 
onditions of the steps of the modi�ed algorithm. It remains toprove that an appropriate variable and transformation rules at the modi�edstep (A7) 
an be found.In Lemma 14, we have shown that every step of Algorithm 1 (and also of itsmodi�ed version) preserves (MCC). Thus, we 
an assume that every node ofour splitting tree is labeled by a formula satisfying (MCC). Note that (MCC)implies that F does not 
ontain variables of odd weights. Also, it does not 
on-tain variables of weight two (Lemma 7(1)), be
ause these are handled by thetransformation rules. Therefore, every formula labeling a node of our splitting16
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ontains a variable of weight at least six (this dire
tly implies therequired inequality K2(F )� K2(Fi) � 6 for i = 1; 2), or ea
h of its variablesis of weight exa
tly four. We now prove that, even in this 
ase, we 
an �ndtransformation rules su
h as to ful�ll the required inequality.Take any 
lause of literals a and b 
orresponding to variables x and y. This
lause has to have weight one: If it would have weight two, (MCC) wouldimply that there is also a 
lause (2; fa; bg) and, thus, there are no other 2-
lauses 
ontaining variables x and y. In this situation, however, Tsmall wouldapply. Therefore, (MCC) implies that there is another literal 
 (
orrespondingto a variable z) su
h that there are, besides (1; fa; bg), also 
lauses (1; f�a;�bg),(1; fa; 
g), and (1; f�a; �
g). Assigning a value to x eliminates four 2-
lauses and
auses Tdom to apply to y and z (again by (MCC)). This eliminates two more2-
lauses be
ause, otherwise, x; y, and z would form a small 
losed subformulaof F . Summarizing, we have that we 
an always ful�ll the modi�ed inequalityof the step (A6). �Theorem 15 gives an upper bound for the running time of the modi�ed algo-rithm on 2-CNF formulas derived from MAX-CUT instan
es. We now trans-late this result into numbers of verti
es and edges of a graph.Corollary 16 Given a graph G having n verti
es and edges of total weightM , we 
an solve (weighted) MAX-CUT in time poly(jGj) � 2M=3, where jGj isthe length of representation of the input. If an unweighted graph has maximumvertex degree three, then MAX-CUT is solvable in time poly(jGj) � 2n=2, andif the graph has maximum vertex degree four, it is solvable in time poly(jGj) �22n=3.PROOF. Generating 2-CNF formulas fromMAX-CUT instan
es, i.e., graphswith n verti
es and edges of total weightM , gives 2-
lauses of total weight 2Mwith n di�erent variables. Then, the bound shown in Theorem 15 translatesinto a bound of poly(jGj) � 22M=6 = poly(jGj) � 2M=3 with respe
t to the totalweight of the edges. The other two bounds follow from the inequalitym � dn=2relating n to the number m of edges and the maximum degree d. �6 Dis
ussion and open questionsOur bounds vs parameterized bounds. In this paper, we proved theupper bound of the order 2K2=5 for MAX-2-SAT with positive integer weights,where K2 is the total weight of 2-
lauses of the input formula (or the num-ber of 2-
lauses for unweighted MAX-2-SAT) and L is the number of literal17
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urren
es. This implies the bound 2L=10 for unweighted MAX-2-SAT. Fromthis, we also derived upper bounds for MAX-CUT.Our bounds depend neither on the weight of an optimal solution nor on a re-quired minimal weight of solution. In 
ontrast, beginning from [8,16,28℄, therehas been mu
h resear
h for parameterized bounds for MAX-SAT, MAX-2-SATand MAX-CUT: in terms of k, how mu
h time do we need to �nd a solutionof weight at least k? For MAX-SAT, Bansal and Raman [4℄ give the bestknown parameterized bound 2k=2:15 whi
h is better than their \unparameter-ized" bound 2K=2:36 when k < 0:92K, where K is the total weight of all 
lauses.In [19℄, the parameterized bound 2k=2:73 for MAX-2-SAT has been proved.However, our present \unparameterized" bound 2K2=5, where K2 is the totalweight of 2-
lauses, is better for all reasonable values of k: the parameter-ized bound is better only when k < 0:55K2, while an assignment satisfying0:5K+0:25K2 � 0:75K2 
lauses 
an be found in a polynomial time [28,38℄. Itseems like the idea of 
ounting only 2-
lauses does not work for parameterizedbounds.As dK=2e 
lauses 
an be easily satis�ed, Mahajan and Raman [28℄ propose toask in the parameterized version of the problem for an assignment satisfyingdK=2+k0e 
lauses. Taking the parameterized bound shown in [19℄ and pluggingit into the results by Mahajan and Raman, we 
an translate it into a boundwith respe
t to this new parameter k0; in time 26k0=2:73 = 2k0=0:45 one 
an �ndan assignment to the variables that satis�es at least dK=2+k0e 
lauses or one
an determine that no su
h assignment exists. However, for k0 � dK2=4e, thisquestion still 
an be handled in polynomial time. Comparing for k0 > dK2=4ethe bound 2k0=0:45 to the bound shown for Algorithm 1, we see, again, that theparameterized bound is worse for every parameter value.It would be interesting, however, to 
onsider, for a given k00, the parameterized
omplexity of the question whether there is an assignment satisfying dK=2 +K2=4e+ k00 
lauses.Possible appli
ations of our ideas. The key idea of our MAX-2-SAT al-gorithm is to 
ount only 2-
lauses (we 
an do this, sin
e MAX-1-SAT instan
esare trivial). It would be interesting to apply this idea to SAT, for example,by 
ounting only 3-
lauses in 3-SAT (sin
e 2-SAT instan
es are easy). Also, itwould be interesting to apply our idea of handling \bottlene
k" 
ases to theanalysis of other algorithms with su
h 
ases [23,30℄. Also, it remains a 
hallengeto �nd a \less-than-2N" algorithm for MAX-SAT, or even for MAX-2-SAT,where N is the number of variables. (Note that for any �xed � > 0, an as-signment satisfying (1� �)OptVal(F ) 
lauses of a formula F in k-CNF 
an befound in randomized 
N time, where 
 < 2 is a 
onstant depending only on kand � [24℄.) 18



Discrete Applied Mathematics, Vol. 130(2), pp. 139–155, 2003In a similar way as we did for MAX-CUT, we 
an apply our results to theNP-
omplete unweighted INDEPENDENTSET problem whi
h also has an easyredu
tion to MAX-2-SAT [9℄. The problem is, for a given graph G = (V;E),to �nd the maximum number of verti
es sharing no edge. The resulting boundwith respe
t to the number of edges m, however, does not improve the boundof 2m=8:77 given by Beigel [5℄.From a more pra
ti
al point of view, it would also be 
hallenging to exam-ine experimentally the eÆ
ien
y of our algorithms. Previous results for ex-a
t MAX-2-SAT algorithms having guaranteed worst-
ase time bounds 
om-pared with an exa
t, heuristi
 algorithm [7℄ la
king guaranteed worst-
asetime bounds have shown en
ouraging results in this dire
tion [18,19℄. It is alsointeresting whether polynomial-time approximation algorithms (su
h as [17℄)
ould be used in pra
ti
e for pruning the sear
h tree for some formulas; how-ever, it is not 
lear if it is possible to use su
h algorithms for proving betterworst-
ase upper bounds.A
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