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Abstract

The efficiency of many data structures and algorithms relies on “locality-preserving”
indexing schemes for meshes. We concentrate on the case in which the maximal distance
between two mesh nodes indexed i and j shall be a slow-growing function of |i—j|. We
present a new 2-D indexing scheme we call H-indexing, which has superior (possibly
optimal) locality in comparison with the well-known Hilbert indexings. H-indexings
form a Hamiltonian cycle and we prove that they are optimally locality-preserving
among all cyclic indexings. We provide fairly tight lower bounds for indexings without
any restriction. Finally, illustrated by investigations concerning 2-D and 3-D Hilbert

indexings, we present a framework for mechanizing upper bound proofs for locality.

Keywords: space-filling curve, self-similar curve, locality-preserving mesh-indexing,

locality-preserving grid-indexing, Hilbert-curve, lower bound, fractal
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For many fields in computer science, indexing schemes for meshes, that is, bijective
mappings {0,...,n—1}" — {0,...,n" — 1}, plays a crucial role. For example, in
computational geometry one often has to map an r-dimensional mesh onto a one-
dimensional traversal order or storage order. In this case, it is often advantageous
if close-by raster points have close-by indices [3]. Analogous problems also arise in
evaluating differential operators or even in a biological setting [20]. A conceptual
problem with this notion of locality is that there are always raster points that are far
apart from some other raster points. The converse notion of locality applies when a
one-dimensional data structures is mapped to a multi-dimensional mesh. Here we are
interested in indexing schemes which map close-by indices to close-by raster points.
We will use the term r — 1 locality for the first notion and the term 1 — r locality
for the latter. 1 — r locality has the advantage that there are indexings for which
locality can be achieved for all indices. Locality of type 1 — r is also natural for
applications in parallel processing on mesh-connected computers, where one often has
to map one-dimensional data structures to the processor-mesh. If the communication
requirements within this data structure are predominantly between close-by indices,
it is advantageous to map them to close-by processors in order to decrease network
contention and latency [6, 7, 21, 25]. In this paper, we therefore concentrate on 1 — r
locality. We concentrate on worst case bounds—for example, this is the only way to
exclude bottlenecks in parallel programs.

Several mesh-indexing schemes are well-known. Most of these have been developed
for the two-dimensional case, but they usually have generalizations for multiple dimen-
sions, for example, row-major or snakelike row-major. However, taking a closer look
at applications in parallel processing, one may observe that these kinds of indexings
do not preserve locality of computation and communication very well. For example,
for an r-dimensional mesh with side-length n and generalized row-major indexing, pro-
cessors 0 and n — 1 are at distance n — 1 from each other. Hence, a communication
between these two processors ties up n — 1 communication links and has a high la-
tency. This is large compared to the distance of about ry/n achievable if the first n
processors could be arranged in a cube. A locality-preserving indexing should yield a
distance f(n) € O(y/n). This should generalize to all pairs of processors within the
mesh, that is, processors indexed i and j should be at most at distance f(|i — j|) from
each other. For example, a simple parallel variant of quicksort can be shown to run
in average time O ((n + log m);’l—,) for m > n" elements on n” processors if a locality-
preserving indexing scheme is used. This is asymptotically optimal and compared
to other asymptotically optimal algorithms only © (logn) rather than © (n) messages
are sent on the critical execution path [25]. Quicksort, using row-major indexing and

related schemes, needs time © ((n logn + log m);’l—,) Various other applications in par-



allel processing are discussed in [7, 15, 19]. Further applications of this kind of locality
can be found ?ﬁsfrfr{l%%% %Eg%{eEsgi%Aggﬁlwﬁﬁhqcse’dvﬁ%‘[dlslZs%é H[E’OTPQHQ YHe Feferences cited
there). See Section 3 for additional discussion.

In this paper, we consider 1 — r locality in mesh-indexings using (discrete) space-
filling curves. To analyze locality, we always make use of the three most important
metrics in use: Manhattan, Euclidean, and maximum. One of the main contributions
of this paper is the introduction of so-called H-indexings for two-dimensional meshes,
which are based on a variant of the 2-D Sierpinski curve. H-indexings possess better
locality than Hilbert indexings. In fact, we conjecture that they are optimally locality-
preserving among all mesh-indexings. In other words, with respect to the Euclidean
metric, we believe that for an n x n-mesh, n > 2, in each indexing there must be indices
i and j with dy(i,5) > \/4]i — j| — ¢, where ¢ is some small constant.

We can show at least that this is true for the class of cyclic indexings. For example,
we prove for H-indexings and the Euclidean metric dy(i, j) < m for arbi-
trary indices ¢ and j. This is tight up to a small additive constant. This answers an
open question from Gotsman and Lindenbaum [10] concerning the existence of a fam-
ily of space-filling curves with locality properties better than those of Hilbert curves,
where we have a constant factor of v/6 instead of 2. Additionally, we have improved
lower bounds for the locality attained through arbitrary indexings with respect to all
three metrics mentioned above. Furthermore, we develop a technique for finding upper
locality bounds by mechanically inspecting a finite number of cases. Consequently, this
is applied to the 2-D Hilbert indexing and 3-D variants of the Hilbert indexing. This
approach enables us to obtain simple and complete proofs of results that are new or
previously relied on difficult to check proofs involving tedious manual case distinctions.

The paper is structured as follows. We introduce some notation in Section 2 and
review related work in Section 3. In Section 4, we introduce H-indexings and show that
they provide a better locality than 2-D Hilbert indexings. The general lower bounds
indicating that the H-indexings may indeed be optimal are derived in Section 5. The
technique for mechanically deriving upper bounds is developed in Section 6. This
technique is shown by a simple yet complete proof for the locality properties of the 2-D
Hilbert indexing with respect to the Manhattan metric. Then we adapt this method,
so that it can be applied to 3-D variants of the Hilbert indexing and also include the
Euclidean and maximum metrics. Section 7 summarizes the results of the paper and

points out some areas requiring future research.

2 Preliminaries

In this paper, we work with 2-D and 3-D meshes (or, equivalently, grids). We con-
centrate on quadratic and cubic grids, where, for example, in the 2-D case we have

n? points arranged in an n x n-array. Meshes occur in various settings such as paral-



lel computing, data structures, image processing, and many other fields of computer
science. In th(]e) %?%%FHQP\%IE@SM?&H%? Tilgssér}ij(%lfc'n% 107 é63 e Pas%cl 1(3621?(37ép25(s)0t20 the 2-D
case. Transferring this to a 3-D ( and r-D) setting is straightforward.

We are interested in indexing schemes for meshes. An indexing scheme is simply
a bijective mapping of {0,...,n?> — 1} onto {0,...,n — 1} x {0,...,n — 1}, thus
providing a total ordering of the mesh points. We will study discrete space-filling curves
and consider them to be special kinds of indexing schemes, which possess the desired
property of locality preservation. To define locality, we first need a metric. We will use
the Manhattan metric dy(a,b) = ||a —b||;, the Euclidean metric dy(a,b) = ||a — bl|,,
and the mazimum metric do, = ||a — b||_ where ||(z, )], = limg_a(|z]° + |y|*)/*.

By using the terms z(i) and y(i) we denote the position of a point i within the grid

||a :

with respect to Cartesian coordinates.

A discrete space-filling curve C' : {0,... ,n*—1} - {0,... ,n—1} x{0,... ,n—1}
fulfills do(C(7),C(i + 1)) = 1. Thus one might say that space-filling curves provide
continuous indexings. A space-filling curve traverses the grid making unit steps and
turning only at right angles. The meaning will always be clear from the context.
Another feature of space-filling curves, besides being continuous, is usually their self-
similarity. Self-similarity here simply means that the curve can be generated by putting
together identical (basic construction) units, applying only rotation and reflection to
these units. This becomes more obvious when considering the construction principles
of Hilbert and H-curves in subsequent sections. To simplify presentation, in this paper
the symbol 7 refers to its geometric location (z(7), y(i)) as well as to its index value. A
segment (i, j) of a space-filling curve is the set {C(i),...,C(j)} of mesh nodes. Our
measure of locality is based on the requirement that for close-by indices 7, j, with small
li — j|, the distance d(7, j) defined by one of the above metrics should also be small.
We call a continuous indexing cyclic if dy(0,n? — 1) = 1. In this case we compute
modulo n?, that is, we use the additive group ({0,...,n? — 1}, +) for adding and
subtracting indices. Also, for cyclic indexings |i| will denote the difference between i
and 0 modulo n?, thus |7| < n?/2. Put simply, these assumptions express the following:

For cyclic indexings it is unimportant at which point the numbering starts.

3 Related work

We cite some of the more recent papers from various fields dealing with locality ques-
tions for meshes and using space-filling curves as indexing schemes. We pay particular
attention here to the field of parallel processing and give a short account of the devel-
opment of locality-preserving indexings in this field.

Whereas we are studying 1 — r locality, r — 1 locality is for example studied by
Mitchison and Durbin [20], who present some optimal results for this setting. Refer

also to the paper of Gotsman and Lindenbaum [10] for a short discussion on various



locality measures and related results. Locality of type r — 1 is important when
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geometrical data is to be mappeéF onto a 0ne—d1mens1012al domain, é.g, 1 parallel
gravitational particle simulation [26], for graph partitioning [14] and fast range queries
for geometrical data stored on disks [3, 4].

Whenever there is a requirement for some kind of locality in mesh indexings, space-
filling curves, and, in particular Hilbert indexings [2, 3, 4, 6, 7, 9, 10, 12, 13, 23, 25]
seem to come into play.

Gotsman and Lindenbaum [10] study 1 — r locality for the Euclidean metric that
plays an important role in fields such as image processing and computer graphics. They
primarily consider Hilbert’s space-filling curve and provide upper and lower bounds.
We improve their upper and lower bounds in the 2-D case.

The Manhattan metric is particularly important in the field of parallel process-
ing on mesh-connected processor arrays. Here, good locality of an indexing scheme
for the processors may lead to reduced communication costs [6, 7, 15, 19, 25]. (The
same applies to the maximum metric, which is more suitable for grids with diago-
nal connections, cf. e.g. [16, 17].) For the Manhattan metric and the field of parallel
processing, we delve into more detail about the history of results and applications.
Stout [27] seems to be the first who used so-called prozimity orderings in the context
of 2-D mesh algorithms. We call them Hilbert indexings due to the direct relation to
Hilbert’s space-filling curve [11, 24]. Subsequently, they have been used to speed up
a wide variety of parallel algorithms: computational geometry [19], fast backtracking
and branch-and-bound [15], mapping of pyramid networks [8], simulation of abstract
parallel computation models [7, 21|, and parallel quicksort [25]. Quantitative analysis
concerning the properties of locality-preserving indexing schemes have, so far, focused
mainly on the 2-D Hilbert-indexing. According to Stout “there is a constant ¢ < 4
such that processors numbered 7 and j are no more than c - m communication
links apart” [27, page 27]. This was then proved by Kaklamanis and Persiano [15]
for ¢ = 4. Recently, a bound of 3 - m has been proved by Chochia, Cole, and
Heywood [7]. However, the proof is quite complicated. We present a fairly simple and
complete proof of this result and show that H-curves, to be introduced in the next
section, are better than Hilbert curves with respect to locality. Lately, Chochia and
Cole [6] attained results for 3-D Hilbert indexings. These are also complemented by
our results and more recent related work [2].

Buhrman et al. explain how average case lower bounds for the 1 — 7 locality can be
obtained using a simple counting argument and the concept of Kolmogorov complexity
[5]. For the 2-D case and the Euclidean metric they show that d (i, 7) > 1/0.636]i — j]
for any i and Q (n?) choices for j. Furthermore, dy(i,5) > \/2.5[i — j| if i is mapped

to a corner point.
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Figure 1: H-indexings are built using triangles as building blocks.

4 The H-indexing

Gotsman and Lindenbaum [10, page 797] posed the question as to “whether there exist
families of space-filling curves with locality properties better than those of the Hilbert
curves for all sizes.” One of the main contributions of this paper is to answer this
question affirmatively. Our result not only applies to the Euclidean metric as studied
by Gotsman and Lindenbaum, but also to the Manhattan and the maximum metrics.
In this section we introduce H-indexings and analyze their locality properties showing,
the claimed improvement compared with Hilbert indexings. Section 5 argues that H-
indexings are optimally locality-preserving among all discrete space-filling curves as

they provide tight lower bounds.

4.1 Construction scheme

H-indexings are related to 2-D Sierpinski curves [24]. As the name indicates, H-
indexings have an “H-shaped” form. In analogy to Hilbert indexings, we obtain index-
ings for 2% x 2¥-meshes' by means of an inductive method. There is, however, a decisive
difference. Whereas in the case of Hilbert indexings the building blocks are four smaller
squares (cf. Section 6 and Figure 7 there), the construction of H-indexings is easier to
describe using right-angled triangles. For Hilbert indexings we only have one building
block to which we apply rotation or reflection. To build the final mesh indexing, we
put together two triangles. Fig. 1 shows the construction of a triangle from 4 smaller
triangles. A triangle with 8 mesh nodes is constructed from triangles with only two
nodes and a triangle with 32 nodes is constructed from those with 8 nodes. Observe
that the triangles are constructed so that precisely every other mesh node along the
diagonal belongs to the nodes of the triangle. Thus an indexing scheme for a square
mesh can be obtained as shown in Fig. 2. Alternatively, Fig. 3 shows how for all £ > 1

an H-indexing through a square of size 4" is built from 4 H-indexings through squares

LA Java program for the general case of non-cubic meshes with arbitrary side-lengths can be found

at http://wwu-fs.informatik.uni-tuebingen.de/ reinhard/hcurve.html.
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Figure 3: Inductive construction principle of H-indexings.

of size 4¥=1 each. For subsequent proofs, however, it is more convenient to make use
of the construction principle based on triangles.

For computer-assisted construction, we can describe the H-indexing of a 2F x 2*
mesh by expressing the coordinates x(i) and y(i) of the i-th point recursively in the
following way. Fig. 4 best demonstrates the subsequently given recurrences for (i)
and y(i). The recurrences relate directly to the recursive construction principle of H-
curves. Consider Fig. 4: The H-Curve starts in the lower left corner with index 0. Let
h := 4% /32, where 4 is the total number of mesh points. The H-curve first traverses the
“triangle” (see Fig. 4) containing 0, then that containing h, then that containing 2h,
then that containing 3h, until at ¢ = 4h it enters the upper left quadrant. From
there it goes through f and then 2¢g and so on, always following some kind of triangle
structure. Most importantly, this triangle structure acts recursively, thus leading to
the somewhat complicated recurrence given below. Its correctness has been checked
by computer. Note that in Fig. 4, ¢ and j are located at some special points, which, as
will later be shown, form a “worst case pair” of indices concerning the locality for the
H-indexing.

Observe that the subsequent parameter [ is uniquely determined in each recursive
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Figure 4: The positions of the points ¢ and j for the worst cases. The recursion is
shown for [ = k — 1. Let g = 2?=! and h = 2273,

step by the if-conditions of the various cases; [ ranges from k£ — 1 to 1.

f 2k —1 - :E(Z — 22k—1) if g > 2219—1,
2l 4 (i — 32271 it 4.92°15>3.921
I(Z) = 2l_1_x(3.22171_1_z') if 3.92-1 >i22_22171,
(22 — 1 —14) if 2.92-1 5> 1.9%1
( 0 if <1
[(ok _ 1 — y(i — 22k—1) it § > %1
2[ + y(l - 3. 22l—1) if 4. 22[—1 >i>3- 22[—1’
y(i) = $ 2 4y(3-22 1 —1—4) if 3.2%71>i>2.92°1
2l+1_1_y(221_1_i) if 2.22l71 >4 2 1.22l71’
W if i<,

The following results for “worst case distances” between points indexed by the H-
curve are to be compared with the subsequent Theorem 1 presenting upper bounds for
the locality of H-indexings. The Euclidean worst case (cf. Fig. 4) for each k are pairs
of points i = 3-2%75 — 1 and j = 2%"3 + 1 with |i — j| = 2%*° + 2 and

dy(i,5) = V/(x(i) —2())? + (y()) — y(7))’
- \/(Qk—Q — 1 — 2k=1 4 2)2 4 (2k—2 _ 2k—1 _1)2
= /4(22%5 4 2) — 842 = /4]i — j| — 6.

7



The same pairs are also responsible for the worst case in the Manhattan metric:
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di(i,7) = [x(@) —z()] + ly(@) —y ()|
_ _2k—2 + 1 4 2k—1 —9_ 2k—2 + 2k—1 + 1= 2k—1
= V8.2%-5 = \/8(li — j| - 2).

Thus, in both cases we observe the worst cases on a diagonal direction (from i to j). In
the maximum metric, however, the worst cases are from 0 to f = 2272 — 1 (see Fig. 4)
with |0 — f| = 2?2 — 1 and

doo(i,j) =28 =1 =2/|0— f| +1 1.

4.2 Upper bounds

In this subsection, we give results for locality properties of H-indexings with respect to

the Euclidean, the Manhattan, and the maximum metric.

Theorem 1. For two arbitrary indices i and j, i # j, on the H-indexing the following

18 true:
1. di(i, 5) < \/8(li = j1=2) for i —j| >3,
2. do(irj) < VAT = 1= 2,
3. doo(iyj) <24/li—jl+1-1.

Observe that upper and lower bounds match for the Manhattan metric and the
maximum metric. For the Euclidean metric we had a lower bound of \/m
which is only O(l/ﬁ) away from the upper bound — less than an additive
constant.

Theorem 1 shows that H-indexings provide an improvement in locality compared to
Hilbert-curves, answering an open question given by Gotsman and Lindenbaum [10].
Focusing their attention on the Euclidean metric, they proved that for Hilbert curves C
with respect to their locality measure L (C) := max; je(1,.. n2}.i<; d2(2, 7)*/]i—j] it holds
6-(1—0(27%) < L,(C) < 20/3, where n = 2% with k > 1. Our result implies that for
H-indexings C' we have L;(C) = 4. To present our result of Theorem 1, we preferred
to make a more concrete and more precise statement (which even includes additive
constants) than the “L;(C)-notation” allows.

Both the maximum metric and the Manhattan metric are of specific relevance in
parallel processing [7, 21, 25]. Another advantage of H-indexings over Hilbert index-
ings is that they do not just describe a Hamiltonian path, but a Hamiltonian cycle
through the mesh as well. This is useful, e.g., for parallel algorithms which employ

communication along a virtual ring network. Interestingly, H-indexings are optimally
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Figure 5: Indexing nodes ({0,1,2,3,4,5,6,7}) in a triangle of size 8 and their repre-
sentatives ({0',1',2',3', 4", 5", 6',7'}). Note that 1" and 3', 2’ and 6, and 5’ and 7' each
have the same location.

locality-preserving among all Hamiltonian cycles through a square mesh, as the next
section shows.

As it turns out, proofs that give the above tight results including additive constants
are fairly technical [22] and have been omitted here. As shown below, however, slightly

weaker results regarding the additive constants can be proved in an elegant way.

Theorem 2. For two arbitrary indices v and j on the H-indexing the following is true:

1. di(i, §) < \/8li — j| + 4,
2. dy(i, ) < 2/]i = jl + V10,
3. du(i,§) < 2¢/i — j] +3.

Proof. We concentrate on proving the result for the Euclidean metric ds(i,j). The
statements for the Manhattan metric d; (i, j) and the maximum metric du(7, j) then

easily follow by the general relations

and

The proof for dy(7,j) works by induction on the size of the smallest triangle (ac-
cording to the construction principle of H-curves) containing both ¢ and j. Note that
all these triangles are right-angled and contain 2! mesh points for [ > 1. Hence the
induction operates on [. For [ =1 and [ = 2 the claim can be trivially checked. Con-

sider a triangle of size 8 (8-triangle for short), that is, [ = 3, as drawn in Fig. 5. For



each of the nodes in an 8-triangle we assign a representative which is located on the
corners of the%%ﬁﬁ?ﬁxﬁgﬁgglgg rggv%E%AFfjg?’ 5V thtlelt%cl)?e)br%%éﬁtla{ﬂ%%é’0 322—triangle
are determined as follows: If possible, rotate the 2-triangle in so that it has the same
orientation (the vertical cathetus to the left, the horizontal cathetus to the bottom)
as the original 8-triangle. The two representatives are then (in the case of Fig. 5) at
the endpoints of the vertical cathetus. Observe that in Fig. 5 the 2-triangle containing
nodes 4 and 5 cannot be rotated in so that it has the same orientation as the 8-triangle.
In this case, we speak of the complementary? triangle and here the endpoints lie on the
horizontal cathetus. Note that each right-angled triangle can be brought (by rotation)
in one of the orientations “one cathetus as bottom line and one cathetus either to the
left or to the right as vertical line.”

Let i and j be two arbitrary nodes and let [ > 2. Let i’ and j' be the representatives
of 7 and j, respectively, which are obtained by applying the above rules to the 8-triangles
containing ¢ and j.

We show by induction on [ that

do(7', ') < 24/i" — 7']. (1)

Observe that the numerical values of 7 and ', j and j', respectively, are the same,
only their geometric positions differ a little. We introduce specifically the convention
that a “2-triangle” may contain 2! + 1 representatives, where the 2! 4 1st is also
the first node of the subsequent triangle. This assumption is solely due to technical
reasons. Our claim can be deduced from Equation (1), because the Euclidean distance
between an index 7 and its representative i’ (for example, 2 and 2') may be at most
V(1/2)2 + (3/2)2 = V10/2. Hence, ds(i, j) < da(i', j')++/10, in the Manhattan case we
have d; (i, 7) < di(7',j')+4, and in the maximum case we have d (7, ) < doo(i', j') + 3.

It remains to prove Inequality (1) by induction on [. The claim for [ =1 and | = 2
can be easily checked (cf. Fig. 5). Now let i' and j’ be in two different halves of their
(smallest) “surrounding” triangle (otherwise the induction hypothesis applies). Due to
our definition of representatives we can assume (up to rotation) a situation as drawn
in Fig. 6. In Fig. 6, the point p located at the right angle always represents a point in
the indexing and the angle between ', p, and j’ is at most 90°. Thus the Euclidean
distance between " and j' can be bounded from above using Pythagoras’ theorem and

the induction hypothesis:

doli'.J) < \J (D) + (b, )
< VAl —p|+4p—j|
= 2/ —7].
This verifies Inequality (1) and the proof is completed. O

2The triangle mirrored at the vertical axis.

10
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oJ

pC

Figure 6: Two representatives in the two halves of the smallest triangle containing
both of them.

In the next section, we show that H-indexings are quite close to optimal locality

mesh-indexings.

5 Lower bounds

This section indicates that H-indexings might be optimal in locality-preservation among
all indexings of 2-D meshes. We conjecture that they are optimal for the Euclidean,
the maximum, and the Manhattan metric. Due to the fact that the difficulty for a
general proof lies in “coming to grips with the loose ends,” we support this conjecture
by showing the optimality among the cyclic indexings.

The idea at the core of the lower bound proofs in this section is described in the
following. As a rule, we pick a small number of points in the mesh. Every mesh
indexing has to traverse these points in some specific order. Considering all possible
orders and having picked out these mesh points carefully, we can focus on the argument
that no matter what the indexing is, two of the indices picked, ¢ and j, must have mesh
distance d(i,j) < cm — d for constants ¢ and d. In the subsequent proofs, we
give values for ¢ and d and prove their correctness by contradiction. The values for
¢ and d were found by analyzing some concrete examples and deriving from these
conjectures concerning ¢ and d, which are proved here. Generally, these lower bound
proofs are based on case distinctions with respect to the order in which the selected
mesh points are traversed by the indexing. The heart of all proofs is the well thought

44

out selection of the appropriate mesh points. These points can be considered a “worst

case configuration” valid for all mesh indexings, yielding our lower bounds.

11



5.1 Euclidean and maximum metric
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Theorem 1 of Gotsman and Lindenbaum [10] says that for any discrete 2-D space-filling

curve on an n x n-mesh, da(i, j) > /3(1 — 1/n)2]i — j|. They also report that by a
computerized exhaustive search they have improved the constant factor 3 to 3.25. We
improve this to 3.5 by a direct proof. In addition, their result is only valid for continuous
indexings, whereas ours poses no restrictions on the indexing. We conjecture that this
can be raised to 4, implying the optimality of H-curves among all mesh-indexings (cf.
Theorem 1 and Theorem 2).

In the following theorem we make use of the general relationship du (7, j) < do(i, 7)

by proving only the result for the maximum metric.

Theorem 3. For each indexing of an n X n-mesh, n > 2, there must be indices i and j
with dy(i,j), deo(i,7) > n/4 such that dy(i, j), doo (i, j) > \/3.5]i — j| — 1.

Proof. Due to dy(i,j) > duo(i,j) it suffices to restrict our attention to the maxi-
mum metric. The proof is by contradiction. Assume on the contrary that for all ;
and j with do.(i,5) > n/4 we have du(i,j) < /3.5[i — j| — 1, that means |i — j| >
(ds(i,7) +1)?/3.5. In the following, we describe something like a “worst case config-
uration” of some index locations in the mesh. We consider the two cases represented
by the two basic pictures below. All other cases are symmetric. Let i; < i3 < i3 and
19 < iy be the indices of the 4 corner points of the n X n-mesh. Since we leave the
relation between i3 and iy open, the following describes (except for symmetric cases)
all possibilities (cf. [10]). Note that the right-hand picture is necessary for the case of

non-continuous indexings.

i2 i3 i3 i2

i g iy i4 i g iy i4

Let ig be the rightmost point in the row between i; and iy with i < 75. Note that
to = 17 is possible. The distance of iy from #; shall be m — 1. Therefore, the neigh-
boring point 75 of iy with iy < 75 has distance n — m — 1 from 4. Generally, we
have two possible orders of 73 and i; and six possible orders of i3, iy and ¢5. Thus,
first assuming n/4 < m < 3n/4 in order to make subsequent use of our assumption
li — 7| > ((da(i, J) + 1)%)/3.5, we derive the relationship shown below. Observe that

the following is valid for both pictures above at the same time.

12
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n* > min{|ip — i1| + |i1 —da|, |1 — o] + |io — 42|}
+ min{|io — i3] + i3 — ia| + |72 — 05|, |ia — i3] + iz — i5] + |i5 — i4],
lig —i5| + |is — 4| + |ia — i3, |i2 — 5| + |i5 — i3] + |i3 — i4],
lig — da| + |ia — i3| + lis —i5|, |i2 — da] + |74 — 15 + |iz — i3]}

> % min{(duo (%9, i1) + 1)2 + (doo (i, 32) + 1)2’ (doo (41, o) + 1)2 T (dus (i0, ) + 1)2}

1
+3F min{ (duo(iz, i3) + 1)? + (doo (i3, i4) + 1) + (doo (14, 5) + 1),

(doc (i, 13) +1)% + (doo (i3, i5) + 1)* + (doo (is, 14) +1)?,

(dso(ia,i5) + 1)* 4 (doo(i5, i) + 1)? + (doo (14, i3) + 1),

(doo (i, i5) + 1)% + (doo(i5,33) + 1)* + (doo (i3, i4) + 1),

(dso (12, 74) + 1)? 4 (doo(ig, i3) + 1)? + (doo (i3, i5) + 1),

(dso (2, 74) + 1)% 4 (doo(ig, i5) + 1)? + (duo (i3, i3) + 1)*}
= Lim )

3.9
+min{2n® + (n — m)?,2n* + (n — m)*, n* + (n — m)? + n?,
3n?,3n* n* + (n — m)® + n*})
m? +3n*+ (n—m)* _ 2m*+4n* —2nm _ 3.5n* +2(n/2 — m)?
3.5 N 3.5 N 3.5
This is a contradiction.

Now, turning to the case m < n/4, we do not use iy as a candidate point and a

similar calculation as above yields:
2 S 3n% + (n —m)? S 3n? + (3n/4)?  3.5625n?

o= 3.5 =7 35 35
a contradiction. Analogously, if m > 3n/4, by eliminating i5 we get
2 S m? + 3n? S 3n* 4+ (3n/4)*  3.5625n°
- 3.5 3.5 35

n

O

Compared to Theorem 3, the lower bound for the special case of cyclic indexings
can be obtained comparatively easily. Together with Theorem 1 it shows optimality of

H-indexings among all cyclic indexings up to small additive constants.

Theorem 4. For each cyclic indexing of an n x n-mesh, n > 2, indices i and j must be
present, so that ds(i, ), deo(i,7) > 2+/]i — j| — 1. This lower bound specifically applies

to the two corners i and j of the mesh.

Proof. Let iy, 1o, i3, and i4 be the 4 corner points of an n X n-mesh. Because the
indexing is cyclic (and thus also continuous, cf. Section 2) there must be two corner
points i; and i with j,k € {1,2,3,4} and j # k such that |i; — 4| < n?/4. On the
other hand, dy(i;, 1) > doo(ij,ix) > n — 1> 24/]ij — i — 1. O

13



5.2 Manhattan metric
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Whereas in the case of the Euclidean and the maximum metric we could give quite close
bounds for the “general case,” this seems to be more problematic when dealing with
the Manhattan metric. In the general case, we obtain the following, comparatively
weaker result, based on a more complicated case distinction concerning “worst case

configurations” of some index locations (as shown by the subsequent pictures).

Theorem 5. For each indexing of an n X n-mesh, n > 2, indices i and j must be
present with dy(i,j) > 2n/5, so that d(i,j) > \/6.5]i — j| — 2.

Proof. Assume the contrary that for all i and j with d; (4, j) > 2n/5 we have d;(i, j) <
V6.5i — j] — 2, making |i — j| > (di(4,j) + 2)?/6.5. We describe the “worst case
configurations” needed for proving our result by the following four pictures. Let i; <
1o < 15 < ig be the indices of the 4 corner points of the n x n-mesh the indexing passes
through in the given order. Then (except for symmetric cases) we have the following
four possibilities. Observe that the first picture comes into play because we also allow

non-continuous indexings.

1.]%5 19 2.|t9 13 17 i 3.| 2 i5 4.|% i5

1 i6 1 o g4 i 11 tol4 1317 i 1 o U7 i

In the second to fourth picture, 7 is the rightmost point in the row containing 7; with
o < 1o and distance m — 1 from ¢y, and 7 is the leftmost point in the row containing ig4
with 75 < 77 and distance [ — 1 from ¢g. Moreover, i3 and 74, are immediate lefthand

and righthand neighbors of i; and 7, respectively.

1. The case exhibited with the first picture is fairly easy to handle. Needing no
further assumptions, we have

n? > iy —ig| = |i1 — da| + |ia — 5| + |i5 — ig]
(di(i1,i9) + 2) + (dy(ig, i5) + 2)? + (dy (15, i) + 2)*
6.5

An? +n?+4n*>  9n?
- 6.5 6.5

a contradiction.

14



2. In the case referring to the second picture, if 74 < i3, then we have
DISCRETE APPLIED MATHEMATICS, VOL. 117(1-3), ppP. 211-237, 2002

TL2 > |ZO - 27‘ = ‘Zg - ZQ| + |ZQ - 24‘ + ‘24 - 23| + |23 - Z5| + |Z5 - 27‘

(dy (i, i2) + 2)% + (dy(i2,14) + 2)* + (d1 (i, 13) + 2)?
6.5
(dy(i3,i5) + 2) + (dy(i5,7) + 2)?

6.5
n+m2+m+m)?+2n—m—02+n+0)2+n+1)?
6.5
8n? + 3m? + 2ml + 317 S 8_712

6.5 ~ 6.5

>

+

v

If m+1>n/2 then

n? > |ig —i7| = |ig — da| + |ia — 5| + |i5 — i7|
(n+m)>+4n* + (n+1)> _ 60°+2(m+)n+m?+ 17 S 7n?
6.5 N 6.5 = 6.5’

otherwise (i.e., m +1 < n/2 and i3 < i4) we have to distinguish between three

sub-cases. First assume that i3 < ¢;. Then

n? > iz —is| = |iz — 1| + iy — da| + |ig — is]
(2n =1 +n*+ (2n)*  9n® —din+I? S 7n?
6.5 N 6.5 = 6.5

If iy > ig, we get the same for reasons of symmetry.

Finally, if 7y < i3 and i4 < ig, then

n® > iy —ig| = iy — i3] + |iz — ia| + |is — ig]
(2n —1)*+n? + (2n — m)? S 9n? —4(m +)n S 7n?
6.5 - 6.5 = 6.5
3. With respect to the third picture, we have
TLQ Z ‘Zg - Z7| = ‘Zg - ZQ| + |ZQ - Z4| + |Z4 - 25‘ + ‘25 - Z7|
(n+m)2+(n+m)>+ 2n—m)>+ (n+1)?
6.5
2 2 2 2
S ™m*+3m°+2nl+1 >7i‘
- 6.5 ~ 6.5

4. The last picture differs from the third case in that iq and iy are now immedi-
ate neighbors. In addition, for reasons of symmetry we assume without loss of
generality that m < n/2 (otherwise, the roles of iy and i; will interchange). If
m < 0.418n, then

TLQ Z ‘Zl - Z7| = |Zl - 25‘ + ‘25 - Z7|
(Zn)2 + (1.58271)2 _ (4 + 2.502)n2
6.5 N 6.5 '

15



If 19 < 7:1, then
DISCRETE APPLIED MATHEMATICS, VOL. 117(1-3), ppP. 211-237, 2002

2

n Z |i0—i7‘:|i0—i1‘+‘i1—i5|+‘i5—i7|
m? + (2n)? + (2n —m)* _ 8n® +2m? — dnm
6.5 B 6.5
6507 + (n—2m)?/2+ (n — 2m)n S 6.5n?
6.5 6.5

If i7 < ig then

n® > iy —ig| = |iy — is| + |is — d7| + |iz — ig]
(2n)% + (1.5n)2 4 (0.5n)? (44 2.25 + 0.25)n?
6.5 B 6.5 '

Otherwise we have 0.418n < m < n/2, iy < ig, and ig < i7. Then

2

n Z |i1—i7‘:|i1—i0|+|i0—i2‘+‘i2—i6|+|i6—i7|
m?> + (n+m)® + (2n)> + (n —m)> _ 6n®> + 3m? - 6.5n°
6.5 65 6.5

again a contradiction.

This completes the proof. O

In the special cyclic case, however, we can again prove (asymptotic) optimality of

H-curves due to the following theorem.

Theorem 6. For each cyclic indexing of an n X n-mesh, n > 2, indices i and j must
be present, so that di(i,j) > +/8|i — j| — 2. This lower bound specifically applies if i

and j are in two diagonally opposite corners of the mesh.

Proof. By definition of a cyclic indexing, |i — j| < n?/2 for all 4 and j in an n x n

square. Consequently, we have for two diagonally opposite corners i and j, dy(7,j) =

m—2>2/20i—j|—2=/8li—j —2. O

6 Mechanizing proofs for upper bounds

The primary goal of this section is to introduce a technique, whereby it is possible
to derive locality properties of self-similar indexings by mechanical inspection. In
Section 6.1, we start with the well know 2-D Hilbert indexing and give a more complete
proof of the tight bound for the Manhattan distance already found in [7], which does not
need tedious manual case distinctions. Then, in Section 6.2 we develop a more widely
applicable technique and apply it to other metrics and to 3-D Hilbert indexings.

16



1)(565:5% A:;Péifﬂg ]\/[ATHEMATIOS 01.171717";(7113), pp. 2111237,[20021 |
Ta) [+l 7hed] LLdLll. FToT
ols| |sla|mie| e
ol allE T
1 @ (b)

Figure 7: Hilbert indexings of size 4 and 16 and the general construction principle.

6.1 The Hilbert indexing

Fig. 7-(a) shows the two smallest Hilbert indexings for meshes of size 4 and 16.
Fig. 7-(b) shows the general construction principle. For any k£ > 1, four Hilbert index-
ings of size 4% are combined into an indexing of size 4**! by rotating and reflecting them
in such a way that concatenating the indexings yields a Hamiltonian path through the
mesh. Note that the left and the right side of the curve are symmetrical to each other.
Consequently, we need only keep track of the orientation of the edge which contains

3

the start and end of the curve (drawn with bold lines here).” We start with a lower

bound for the locality:

Theorem 7. For every k > 1, indices i and j are present on the Hilbert indexing, so
that |i — j| = 41 and the Manhattan-distance of i and j is exactly 3\/|i — j| — 2 =
3.2k-1 92,

Proof. Consider Fig. 8. It shows parts of the Hilbert indexing (rotated 90 degrees to the
right compared to Fig. 7). It suffices to show that the indices i and j in the lower left and
upper right corner of the shaded area of Fig. 8 have Manhattan-distance 34/]i — j| — 2.
We must compute the size of the shaded area which denotes all nodes on the Hilbert
indexing lying between 7 and j. We always draw the largest subsquare filled by the
Hilbert indexing on the path from i to j. In this sense, the dotted line represents the
path of the Hilbert indexing respective of the sizes of the largest subsquares it passes
through. Except for the lower left corner and upper right corner we have exactly three
subsquares of size 2! x 2! within the shaded area for each 0 < | < k — 1. As the
shaded area of the left half can be mapped onto the unshaded area in the right half
of Fig. 8 (except for one mesh node remaining), we get |i — j| = 4*~!. Computing
3v/|i—j] —2 =321 — 2 we obtain the Manhattan-distance of i and j exactly,
where the latter can easily be read from Fig. 8. U

3We note without proof that the above rule uniquely defines the Hilbert indexing up to global
rotation and reflection. In a sense, the Hilbert curve is the “simplest” self-similar, recursive, locality-
preserving indexing scheme for square meshes of size 2¥ x 2¥. More details can be found in [2].
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Figure 8: Worst-case for the Manhattan-distance between two indices ¢ and j.

Before we come to the matching upper bound, we need a technical lemma that
shows how we can bound max|;_j|—, d(i, j) for a fixed m by inspecting a finite number
of segments. These are those segments of length m which either lie within a single
indexing of size 4/°84™! or within two such sub-grids. For the latter case there are four
subcases for the four different relative orientations of two subgrids shown in Fig. 9.

This method works for an arbitrary norm ||-||.

Lemma 8. Let x(i) and y(i) denote the x-coordinate and y-coordinate of the ith point
in the Hilbert indexing. Let

ding(m) = max{d(i,j) : [i—jl=mA0<i<j<4aloeml gngd
)
— z(j")—2 ()], 1+y (") +y (@
dexi(m) =, max  max <||<1+z<j')+y<z">,y<j'>z(z"))ﬂ)
1+ +2 (), ()~ @D

Then Vi, j : d(i,j) < max(dint(|i — j|), dext (|7 — 7))
Proof. Consider any segment size m and any indices ¢ and j with |i — j| = m. W.l.o.g.
assume j > i and let k£ = [log, m].

(1) Case Vi€ {i+1,...,5}:1# 0 mod 4¥: Due to the self-similarity of the Hilbert

indexing, the segment (i, j) is isomorphic to the segment (i mod 4%, j mod 4*). This

segment has already been checked by computing diy (m).

(2) All other cases: There is exactly one [ with i <! < j and [ = 0 mod 4*. Due

to the self-similarity and symmetry of the Hilbert-indexing, the segments (I, j) and

(i, — 1) are isomorphic to the segments (0,4') and (0, j') respectively where j' = j —1

and i = [ —i — 1. There are only four different ways (disregarding rotation and

reflection) the segments (I, j) and (i,l — 1) can be oriented toward each other. Fig. 9

18
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Figure 9: Possible relative orientations of two Hilbert-squares, where i’ corresponds to

the term [ — i — 1 in the proof of Lemma 8 and j' corresponds to j — [.

shows the ways in which this is possible. For each of these four cases, a formula
describing the distance vector between the points ¢ and j can be derived as follows:
In one direction, the distance between the two points is one (the distance between
the two subsquares) plus the sum of two coordinates from points i’ and j' (using the
standard orientation of the Hilbert-indexing). In the other direction, the distance is the
difference between the other two coordinates of i’ and j'. For example, if the subsquares
are arranged as in the leftmost part of Fig. 9, we have to add one, y(j'), and z(i') in
order to get the distance in the z-direction while the distance in the y-direction is
|z(j') — y(i')|. The inner maximization for the definition of dey checks the norms of
the four possible distance vectors. The outer maximization covers all possible values
for . O

This result will later be used in its full generality. It should be emphasized here
that Lemma 8 can be verified mechanically by a simple computer program. For now,
we concentrate on the Manhattan metric:

Theorem 9. For the Manhattan-distance of two arbitrary indices i and j on the Hilbert
indexing with i # j, we have dy(i,5) < 3/|i — j| — 2.

Proof. The fundamental goal here is to exploit the self-similarity of the Hilbert indexing
for an inductive proof over |i — j|. In principle, the proof is quite simple. However, it
proves to be the case that a special treatment is necessary for “small” meshes and for

indices 7 and j which are close to the worst case described in Theorem 7.
(1) Case |i — j| < 16: Apply Lemma 8 for |i — j| € {1,...,15}.

(2) Case |i — j]
statement: d; (4, j)

16: By induction over |i — j| we prove the following stronger

>
< 34/]i —j| — 2.5 oriand j are arranged as in Theorem 7 (Fig. 8)
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and dq(z,7) = 3+/]1 — j| — 2.
16, J) DISC|RETE ‘APPLIED MATHEMATICS, VOL. 117(1-3), pP. 211-237, 2002
(2.1) Basis of induction, 16 < |i — j| < 80:  Apply Lemma 8 for |i — j| €

{16, ...,80}. Note that this can be done mechanically by a simple computer program.

(2.2) Inductive step for |i — j| > 80: We look at the “coarsened” indexing defined
by considering each 2 x 2 subsquare starting at even coordinates as a single mesh node.
Due to the self-similarity of the Hilbert indexing, the coarsened indexing is itself a
Hilbert indexing.

Define a € N, b € {0,1,2,3}, ¢ € N and d € {0,1,2,3}, so that i = 4a + b and
j = 4c+d. In the coarsened indexing, the positions of 7 and j are a and ¢ respectively.
Since |a — ¢| > 16, we can apply the induction hypothesis. Furthermore, d;(i, ) <
2 - dy(a,c) + 2 because for each of the four mesh-positions in subsquare a there is a
corresponding mesh-position in subsquare ¢ which is 2 - d(a, ¢) steps away; at worst
j can be another two steps away from the mesh-position corresponding to . We now

distinguish two cases regarding the relative positions of a and c.

(2.2.1) a and c are not arranged as in Theorem 7: By the induction hypothesis
we have dy(a,c) < 34/|a — ¢| — 2.5 and therefore

di(i,j) <2(3v/|la—¢| —2.5)4+2=6+/|la—c| -3 .

Substituting a = % and ¢ = % we get

=B = G-l _ i—jl+ld=b _li—jl+3

4 - 4 - 4
and therefore d; (i, j) < 34/]i — j| + 3—3. A simple calculation shows that 3,/]i — j| + 3 <
3y/|i — j| + 0.5 for |i — j| > 80 and therefore d; (i, j) < 3y/|i — j| — 2.5.

la —c| =

(2.2.2) a and ¢ are arranged as in Theorem 7: With the exception of symmetrical
cases the 2 x 2-subsquares for i and j are numbered (§3) and (§34) and the subsquare
for j is above and to the right of the subsquare for i (refer to Fig. 8). There are two
subcases:

(2.2.2.a) b=d =1: i and j are also arranged as in Theorem 7 and we get

1—1
4

-1
dmg):%ga—d—m+2=3¢4 -—LZ%—2=3 i—jl—2

as desired.

(2.2.2.b) Else: We can use the estimate d;(i,j) < 2d(a,c) + 1 because the worst
case, in which d;(i,j) = 2d;(a,c) + 2, has already occurred in the case b =d = 1. A
calculation similar to the previous shows that

di(i,5) <268V]a—c[—=2)+1=6]a—c| —3<3/]i—j| — 2.5 .
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6.2 A generalized technique and its applications
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There are few instances where the proof of Theorem 9 makes explicit use of the prop-
erties of the Hilbert indexing or the Manhattan metric. We now offer a generalized
technique which can be applied to a wide spectrum of self-similar indexings in r-
dimensional meshes made up of building blocks of size ¢, ..., ¢, and a norm ||-||.
However, for simplicity we restrict the presentation to cubic building blocks with side-
length ¢ and only show how slightly looser upper bounds than those of Theorem 9 can
be proved. The latter relaxation allows us to avoid the special treatment of the worst

case segments which is necessary in the proof of Theorem 9.

Theorem 10. Given any indexing scheme for r-dimensional meshes with the property

that combining each elementary cube of size ¢" from a mesh of size ¢*" into a single

meta-node yields the indexing for a mesh of size ¢#=Vr:

If g0 < fi = j < ¢ 2 d(i, §) < a(Y/]i — 4|~ 6) = 8

Vo +q¢ —1-¢*
g—1

i—jl—8) 8.

where B :=||(1,...,1)|| and 6 >

then V)i — j| > ¢* V" 1 d(i,7) < a({

The proof of Theorem 10 is quite analogous to the Proof of Theorem 9:

Proof. By induction over |i — j|. Let a = [i/q"|, b = imod ¢", ¢ = |j/q"|, and
d = jmod q". Due to the self-similarity of the indexing scheme, we can apply the
induction hypothesis to a and c if |i — j| > ¢*". We find d(i,5) < q - d(a,c) + (g — 1)
because for each of the ¢" mesh-positions in subcube a there is a corresponding mesh-
position in subcube ¢ which is ¢ d(a, ¢) steps away; at worst j can be another 3(q — 1)
steps away from the mesh-position corresponding to i (the diameter of a cube of side
length ¢). Using the induction hypothesis, we have d(a,c) < a(3/]a — ¢/ — §) — 3 and

therefore

d(i, j) < q(a(3/ |=0) =P +Blg—1)=q o —0) -5 .

j—d
qr

Substituting a = iqu

c= we get

(=0 = G- _li=il+ld=b _li=jl+q -1
q q q

la—c| =

and therefore d(i, j) < a(X

Si—jl+q —1—¢5 < /Ji—j| =6 for |i —j| > ¢*" andéZ—r”qkr;rErfl*qk. O

) — B. A simple calculation shows that

Theorem 10 can be applied so that it yields upper bounds for d(i,j). However, the
additive constant J and—except for the Manhattan metric—the additive constant 3 are
artifacts of the inductive proof. If we do not want to make case distinctions involving

special properties of worst case segments as in the proof of Theorem 9, we have to accept
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Figure 10: Relative cube orientations to be checked for bounding maximum distances

for a given segment size.

a small increase in the multiplicative factor a which compensates for the additive
constants if |¢ — j| is large. The case of small |i — j| can be resolved mechanically.
i—jl+

Consider the following procedure for obtaining bounds of the form d(i, j) < ay,

¢ where ¢ is some constant to be determined.
e Determine ¢ and r from the definition of the indexing.

e Fix a value k for the mesh size to be inspected.

v/ kr r_1— k
Set § = VL 14 Coand 8= |(1,..., D).

qg—1

e Make use of the self-similarity of the indexing to find an analog to Lemma 8
which makes it possible to bound d(, j) for indices with |i — j| = m using some

mechanizable method.

e Find a constant a, so that d(i, j) < a({/]i — j|—8) — 3 for ¢~V < |i —j| < k"
where 0 and 3 are defined as in Theorem 10. Applying Theorem 10 we can
infer that the same is true for [i — j| > ¢*", ie. V|i — j| > ¢*=V" : d(4,5) <

a(/li—jl=90) -0 <a/li—jl—p.

e Find a constant ¢ > — such that d(i, j) < a{/]i — j| + ¢ for |i — j| < ¢g*=1r.

e We can now conclude from the two points above that for all i, j, d(i,j) <

a/li—j|+ec.

In the following, we will simply use ¢ = 0 (which will always suffice) in order to indicate
that the additive constants are not tight. Also, we will only cite the tightest constant
factor for an upper bound as given by our method without repeating the point that the
constructive nature of the method also yields a lower bound with a close-by constant

factor.
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2-D Hilbert indexings
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Using the above method and by applying a small computer program* to the case k = 8,
we can infer a bound for the Euclid metric of dy(4, j) < v/6 + 0.014/]i — j|, which is very
close to the lower bound of W — 1 according to Gotsman and Lindenbaum
[10]. A significant improvement of the upper bound ds(i,j) < /6 + %m is
derived in the same paper.

Trivially, the same bound also applies to the maximum metric for which Gotsman
and Lindenbaum reported the same constant factors of V6 and /6 + % for lower and

upper bounds respectively.

Symmetric 3-D Hilbert indexings

@ (b) (©)

Figure 11: Rule for building 3-D Hilbert indexings of order k£ from indexings of order
k — 1. The bottom front edge of the new cube is distinguished by the fact that the
indexing starts and ends there. The corresponding edges of the component cubes are

drawn with thick lines. The order £ — 1 cubes have to be rotated accordingly.

We have also applied the above technique to the three variants of a 3-D Hilbert indexing
shown in Fig. 11. Up to rotation and reflections, these are the only variants which are
symmetrical with respect to an axis. The maximum segment distances can be checked
in a complete analogy of Lemma 8: Now nine relative orientations are to be checked.’?

Applying the “method” for variants (b) and (c) with & = 5 yields d;(i,j) <
4.820661¢/]i — j| and the systematic search discovers indices with d;(i,j) >
4.820248 ¢/]i — j|. Variant (a) has a slightly better locality: d; (4, j) < 4.6161/]i — j]—
3 for large |i — j|, which also applies for small |i — j| using a slightly looser additive
constant. In comparison, the best previous bound has the constant factor 8/\3/4_1 ~ 5.04
6].

4 Available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/euclid2.c.
A C-program doing the necessary checks is available under http://www.mpi-sb.mpg.de/

“sanders/programs/hilbert/check3d.c
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Variant (a) is also slightly superior using the Euclidean metric, Where we get
dy(i, j) < 3. 21%@59wa o8 vaniant qjl(zjlsndvc(l)L 117 < g?f&ﬁlw or variants
(b) and (¢) when we apply a simple program® for k& = 4. As opposed to the 2-D case,
the maximum metric allows smaller bounds than the Euclidean metric in the 3-D case.
We get do (4, j) < 3.076598/]i — j| for variant (a) and d(i,j) < 3.104403/]i — j]
for variants (b) and (c).”

The method could also be applied to the asymmetrical variants of the Hilbert
indexing described in [6]. We only have to change the procedure for checking maximum
segment sizes in order to take segments starting at both ends of a cube indexing into
account. Even generalizations to more complicated schemes, like the H* indexing
described in [6], seem possible. (This scheme appears to have a better locality than
simple Hilbert indexings.) H* uses two non-isomorphic building blocks to define larger
indexings. But it still has the crucial property that the replacement of a 2 x 2 x 2 cube

with a unit cube yields an instance of the indexing.

7 Conclusion

Locality-preserving indexing schemes are increasingly becoming a standard technique
by which to devise simple and efficient algorithms for mesh-connected computers, pro-
cessing geometric data, image processing, data structures, and several other fields. The
methods developed here help to use the term “locality-preserving” in an accurate quan-
titative sense. This makes it possible to show that for the most important 2-D case,
the newly presented H-indexing is superior with respect to locality compared with the
previously used Hilbert indexing. We conjecture that H-indexings are actually opti-
mal among all possible indexing schemes, although we could only prove this for cyclic
indexings thus far. This applies to the Euclidean as well as the maximum and the
Manhattan metrics.

Our techniques for mechanically deriving upper bounds make it possible to quickly
gain insight into the locality properties of indexing schemes. In particular, it was
possible to give new, almost tight bounds for the 2-D Hilbert indexing with respect to
the Euclidean metric and the maximum metric and also for the symmetric 3-D Hilbert
indexings. In the following table we summarize our locality bounds for 2-D indexings
and also include the results from [18] for Peano indexings, where it is remarkable
that a variant of the Peano indexing yields better results than the Hilbert indexing in

maximum metric:

6 Available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/euclid3d. c.
"The program is available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/

max3d.c.
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d(i, j) (2-D) Euclidean rnaXlrnum Manhattan

General lower bonnd [ o/Bol = T /38l T [ o5 g~
Cyclic lower bound VAali—gl =1 \/4|z—]\—1 \/8|z—]|—2
Upper bd. H-curve VAl — gl =2 | VAli—jl+4—1| /8(i —j| —2)

Upper bd. 2-D Hilbert \/6.01)i — j| V6.01)i —j| | /9]i — j| —2

Upper bd. Peano-curve V8li — V8Ji — 4l | 1/(10.66]i — j])

Upper bd. Peano-curve2 /6.25)i — j \/5.625]i — j| (10)i — 7])
With the advent of 3-D mesh-connected computers, such as the Cray T3E, the

increasing interest in processing 3-D geometrical data and the growing importance of

multidimensional data structures means that locality-preserving 3-D mesh indexings
will become more important.® The following table summarizes locality bounds for 3-
D indexings. The rather technical proofs of these results are contained in the technical
report [22] corresponding to this paper. In particular, the table provides upper bounds
for some symmetric 3-D variants of the Hilbert indexing. Note that here we still have

a significant gap between upper and lower bounds.

d(i,j) (3-D) Euclidean maximum Manhattan

General lower bound Y11l — 5] — /3 8251 — j| — 1| {/42.625]i — j| — 3
~2.23Y/li—jl — V3 | ~2.02{/li—j]— 1| ~3.49{/]i —j| — 3
Cyclic lower bound | {/12.39]i — j| — /3 V9l —jl -1 Vo4li—jl -3
~231/li—jl — V3 | ~2.08Y/i —j| -1 | ~3.77{/]i — j| — 3

U. bd. 3-D Hil. (a) /332 — j| /2920 — j] $/98.4]i — j]

~ 3.22¢/]i — j| ~ 3.08¢/]i — | ~ 4.62{/]i — J|
U. bd. 3-D Hil. (b,c) /3420 — | $/30.0]i — j| /11210 — J]
~ 3.25¢/[i — j| ~ 3.11¢/]i — j| ~ 4.83%/]i — j|

Future work

There is a number of interesting open questions. One of these is to close the gap
between the upper and lower bound for non-cyclic 2-D indexings and, in particular, for
3-D indexings.

Mechanical inspection methods will play an important role in investigating other
indexings in particular for higher dimensions and for more complicated construction
rules. The inspection methods themselves can be refined in various ways. They can be
adapted to indexing schemes which are not based on combining cubic elements if we
use a top-down decomposition rather than a bottom-up decomposition. For example,
for some constant &', an H-indexing of size 2¥ x 2* could be partitioned into 2 - 4%

triangles of area 2¥~*~! without fixing k. The construction principle for the H-curve

80n modern parallel machines, good locality has mainly the indirect effect of increasing the usable
bandwidth whereas the latency due to the distance in the network is negligible compared to other
overheads. So is would also be interesting to study bandwidth directly.
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then defines a (cyclic) path traversing all the triangles. Thus, a computer can count the
number of tria]?llgsﬁe%EoTI]ij t%répﬁslﬁgr%ls&g{ﬁfﬁgt S’b}e/’é)v%éelnl 7a 1}7?”5)\2’&7(1)) %fi%lnlgil%g?’ Og 2algorithm
can also be made faster by adaptively refining only those segments where computations
for small &' could not rule out high diameter segments.

Initial work concerning the study of structural and combinatorial properties of
Hilbert indexings in higher dimensions heas recently begun [2]. In particular, it is
clearly pointed out what characterizes an r-dimensional Hilbert curve for arbitrary r >
2.
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