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AbstratThe eÆieny of many data strutures and algorithms relies on \loality-preserving"indexing shemes for meshes. We onentrate on the ase in whih the maximal distanebetween two mesh nodes indexed i and j shall be a slow-growing funtion of ji�jj. Wepresent a new 2-D indexing sheme we all H-indexing , whih has superior (possiblyoptimal) loality in omparison with the well-known Hilbert indexings. H-indexingsform a Hamiltonian yle and we prove that they are optimally loality-preservingamong all yli indexings. We provide fairly tight lower bounds for indexings withoutany restrition. Finally, illustrated by investigations onerning 2-D and 3-D Hilbertindexings, we present a framework for mehanizing upper bound proofs for loality.Keywords: spae-�lling urve, self-similar urve, loality-preserving mesh-indexing,loality-preserving grid-indexing, Hilbert-urve, lower bound, fratal
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1 IntrodutionFor many �elds in omputer siene, indexing shemes for meshes, that is, bijetivemappings f0; : : : ; n� 1gr ! f0; : : : ; nr � 1g, plays a ruial role. For example, inomputational geometry one often has to map an r-dimensional mesh onto a one-dimensional traversal order or storage order. In this ase, it is often advantageousif lose-by raster points have lose-by indies [3℄. Analogous problems also arise inevaluating di�erential operators or even in a biologial setting [20℄. A oneptualproblem with this notion of loality is that there are always raster points that are farapart from some other raster points. The onverse notion of loality applies when aone-dimensional data strutures is mapped to a multi-dimensional mesh. Here we areinterested in indexing shemes whih map lose-by indies to lose-by raster points.We will use the term r ! 1 loality for the �rst notion and the term 1 ! r loalityfor the latter. 1 ! r loality has the advantage that there are indexings for whihloality an be ahieved for all indies. Loality of type 1 ! r is also natural forappliations in parallel proessing on mesh-onneted omputers, where one often hasto map one-dimensional data strutures to the proessor-mesh. If the ommuniationrequirements within this data struture are predominantly between lose-by indies,it is advantageous to map them to lose-by proessors in order to derease networkontention and lateny [6, 7, 21, 25℄. In this paper, we therefore onentrate on 1! rloality. We onentrate on worst ase bounds|for example, this is the only way toexlude bottleneks in parallel programs.Several mesh-indexing shemes are well-known. Most of these have been developedfor the two-dimensional ase, but they usually have generalizations for multiple dimen-sions, for example, row-major or snakelike row-major. However, taking a loser lookat appliations in parallel proessing, one may observe that these kinds of indexingsdo not preserve loality of omputation and ommuniation very well. For example,for an r-dimensional mesh with side-length n and generalized row-major indexing, pro-essors 0 and n � 1 are at distane n � 1 from eah other. Hene, a ommuniationbetween these two proessors ties up n � 1 ommuniation links and has a high la-teny. This is large ompared to the distane of about r rpn ahievable if the �rst nproessors ould be arranged in a ube. A loality-preserving indexing should yield adistane f(n) 2 O( rpn). This should generalize to all pairs of proessors within themesh, that is, proessors indexed i and j should be at most at distane f(ji� jj) fromeah other. For example, a simple parallel variant of quiksort an be shown to runin average time � �(n+ logm)mnr � for m � nr elements on nr proessors if a loality-preserving indexing sheme is used. This is asymptotially optimal and omparedto other asymptotially optimal algorithms only � (logn) rather than � (n) messagesare sent on the ritial exeution path [25℄. Quiksort, using row-major indexing andrelated shemes, needs time � �(n logn+ logm)mnr �. Various other appliations in par-1
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allel proessing are disussed in [7, 15, 19℄. Further appliations of this kind of loalityan be found in image proessing and related �elds (see [10℄ and the referenes itedthere). See Setion 3 for additional disussion.In this paper, we onsider 1! r loality in mesh-indexings using (disrete) spae-�lling urves. To analyze loality, we always make use of the three most importantmetris in use: Manhattan, Eulidean, and maximum. One of the main ontributionsof this paper is the introdution of so-alled H-indexings for two-dimensional meshes,whih are based on a variant of the 2-D Sierpi�nski urve. H-indexings possess betterloality than Hilbert indexings. In fat, we onjeture that they are optimally loality-preserving among all mesh-indexings. In other words, with respet to the Eulideanmetri, we believe that for an n�n-mesh, n � 2, in eah indexing there must be indiesi and j with d2(i; j) �p4ji� jj � , where  is some small onstant.We an show at least that this is true for the lass of yli indexings. For example,we prove for H-indexings and the Eulidean metri d2(i; j) � p4ji� jj � 2 for arbi-trary indies i and j. This is tight up to a small additive onstant. This answers anopen question from Gotsman and Lindenbaum [10℄ onerning the existene of a fam-ily of spae-�lling urves with loality properties better than those of Hilbert urves,where we have a onstant fator of p6 instead of 2. Additionally, we have improvedlower bounds for the loality attained through arbitrary indexings with respet to allthree metris mentioned above. Furthermore, we develop a tehnique for �nding upperloality bounds by mehanially inspeting a �nite number of ases. Consequently, thisis applied to the 2-D Hilbert indexing and 3-D variants of the Hilbert indexing. Thisapproah enables us to obtain simple and omplete proofs of results that are new orpreviously relied on diÆult to hek proofs involving tedious manual ase distintions.The paper is strutured as follows. We introdue some notation in Setion 2 andreview related work in Setion 3. In Setion 4, we introdue H-indexings and show thatthey provide a better loality than 2-D Hilbert indexings. The general lower boundsindiating that the H-indexings may indeed be optimal are derived in Setion 5. Thetehnique for mehanially deriving upper bounds is developed in Setion 6. Thistehnique is shown by a simple yet omplete proof for the loality properties of the 2-DHilbert indexing with respet to the Manhattan metri. Then we adapt this method,so that it an be applied to 3-D variants of the Hilbert indexing and also inlude theEulidean and maximum metris. Setion 7 summarizes the results of the paper andpoints out some areas requiring future researh.2 PreliminariesIn this paper, we work with 2-D and 3-D meshes (or, equivalently, grids). We on-entrate on quadrati and ubi grids, where, for example, in the 2-D ase we haven2 points arranged in an n � n-array. Meshes our in various settings suh as paral-2
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lel omputing, data strutures, image proessing, and many other �elds of omputersiene. In the following, we restrit the desription of some basi onepts to the 2-Dase. Transferring this to a 3-D ( and r-D) setting is straightforward.We are interested in indexing shemes for meshes. An indexing sheme is simplya bijetive mapping of f0; : : : ; n2 � 1g onto f0; : : : ; n � 1g � f0; : : : ; n � 1g, thusproviding a total ordering of the mesh points. We will study disrete spae-�lling urvesand onsider them to be speial kinds of indexing shemes, whih possess the desiredproperty of loality preservation. To de�ne loality, we �rst need a metri. We will usethe Manhattan metri d1(a; b) = ka� bk1, the Eulidean metri d2(a; b) = ka� bk2,and the maximum metri d1 = ka� bk1 where k(x; y)k� := lim�!�(jxj� + jyj�)1=�.By using the terms x(i) and y(i) we denote the position of a point i within the gridwith respet to Cartesian oordinates.A disrete spae-�lling urve C : f0; : : : ; n2� 1g ! f0; : : : ; n� 1g�f0; : : : ; n� 1gful�lls d1(C(i); C(i + 1)) = 1. Thus one might say that spae-�lling urves provideontinuous indexings. A spae-�lling urve traverses the grid making unit steps andturning only at right angles. The meaning will always be lear from the ontext.Another feature of spae-�lling urves, besides being ontinuous, is usually their self-similarity . Self-similarity here simply means that the urve an be generated by puttingtogether idential (basi onstrution) units, applying only rotation and reetion tothese units. This beomes more obvious when onsidering the onstrution priniplesof Hilbert and H-urves in subsequent setions. To simplify presentation, in this paperthe symbol i refers to its geometri loation (x(i); y(i)) as well as to its index value. Asegment (i; j) of a spae-�lling urve is the set fC(i); : : : ; C(j)g of mesh nodes. Ourmeasure of loality is based on the requirement that for lose-by indies i, j, with smallji� jj, the distane d(i; j) de�ned by one of the above metris should also be small.We all a ontinuous indexing yli if d2(0; n2 � 1) = 1. In this ase we omputemodulo n2, that is, we use the additive group (f0; : : : ; n2 � 1g;+) for adding andsubtrating indies. Also, for yli indexings jij will denote the di�erene between iand 0 modulo n2, thus jij � n2=2. Put simply, these assumptions express the following:For yli indexings it is unimportant at whih point the numbering starts.3 Related workWe ite some of the more reent papers from various �elds dealing with loality ques-tions for meshes and using spae-�lling urves as indexing shemes. We pay partiularattention here to the �eld of parallel proessing and give a short aount of the devel-opment of loality-preserving indexings in this �eld.Whereas we are studying 1 ! r loality, r ! 1 loality is for example studied byMithison and Durbin [20℄, who present some optimal results for this setting. Referalso to the paper of Gotsman and Lindenbaum [10℄ for a short disussion on various3
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loality measures and related results. Loality of type r ! 1 is important whengeometrial data is to be mapped onto a one-dimensional domain, e.g, in parallelgravitational partile simulation [26℄, for graph partitioning [14℄ and fast range queriesfor geometrial data stored on disks [3, 4℄.Whenever there is a requirement for some kind of loality in mesh indexings, spae-�lling urves, and, in partiular Hilbert indexings [2, 3, 4, 6, 7, 9, 10, 12, 13, 23, 25℄seem to ome into play.Gotsman and Lindenbaum [10℄ study 1 ! r loality for the Eulidean metri thatplays an important role in �elds suh as image proessing and omputer graphis. Theyprimarily onsider Hilbert's spae-�lling urve and provide upper and lower bounds.We improve their upper and lower bounds in the 2-D ase.The Manhattan metri is partiularly important in the �eld of parallel proess-ing on mesh-onneted proessor arrays. Here, good loality of an indexing shemefor the proessors may lead to redued ommuniation osts [6, 7, 15, 19, 25℄. (Thesame applies to the maximum metri, whih is more suitable for grids with diago-nal onnetions, f. e.g. [16, 17℄.) For the Manhattan metri and the �eld of parallelproessing, we delve into more detail about the history of results and appliations.Stout [27℄ seems to be the �rst who used so-alled proximity orderings in the ontextof 2-D mesh algorithms. We all them Hilbert indexings due to the diret relation toHilbert's spae-�lling urve [11, 24℄. Subsequently, they have been used to speed upa wide variety of parallel algorithms: omputational geometry [19℄, fast baktrakingand branh-and-bound [15℄, mapping of pyramid networks [8℄, simulation of abstratparallel omputation models [7, 21℄, and parallel quiksort [25℄. Quantitative analysisonerning the properties of loality-preserving indexing shemes have, so far, fousedmainly on the 2-D Hilbert-indexing. Aording to Stout \there is a onstant  < 4suh that proessors numbered i and j are no more than  �pji� jj ommuniationlinks apart" [27, page 27℄. This was then proved by Kaklamanis and Persiano [15℄for  = 4. Reently, a bound of 3 �pji� jj has been proved by Chohia, Cole, andHeywood [7℄. However, the proof is quite ompliated. We present a fairly simple andomplete proof of this result and show that H-urves, to be introdued in the nextsetion, are better than Hilbert urves with respet to loality. Lately, Chohia andCole [6℄ attained results for 3-D Hilbert indexings. These are also omplemented byour results and more reent related work [2℄.Buhrman et al. explain how average ase lower bounds for the 1! r loality an beobtained using a simple ounting argument and the onept of Kolmogorov omplexity[5℄. For the 2-D ase and the Eulidean metri they show that d2(i; j) �p0:636ji� jjfor any i and 
 (n2) hoies for j. Furthermore, d2(i; j) � p2:5ji� jj if i is mappedto a orner point.
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Figure 1: H-indexings are built using triangles as building bloks.4 The H-indexingGotsman and Lindenbaum [10, page 797℄ posed the question as to \whether there existfamilies of spae-�lling urves with loality properties better than those of the Hilberturves for all sizes." One of the main ontributions of this paper is to answer thisquestion aÆrmatively. Our result not only applies to the Eulidean metri as studiedby Gotsman and Lindenbaum, but also to the Manhattan and the maximum metris.In this setion we introdue H-indexings and analyze their loality properties showing,the laimed improvement ompared with Hilbert indexings. Setion 5 argues that H-indexings are optimally loality-preserving among all disrete spae-�lling urves asthey provide tight lower bounds.4.1 Constrution shemeH-indexings are related to 2-D Sierpi�nski urves [24℄. As the name indiates, H-indexings have an \H-shaped" form. In analogy to Hilbert indexings, we obtain index-ings for 2k�2k-meshes1 by means of an indutive method. There is, however, a deisivedi�erene. Whereas in the ase of Hilbert indexings the building bloks are four smallersquares (f. Setion 6 and Figure 7 there), the onstrution of H-indexings is easier todesribe using right-angled triangles. For Hilbert indexings we only have one buildingblok to whih we apply rotation or reetion. To build the �nal mesh indexing, weput together two triangles. Fig. 1 shows the onstrution of a triangle from 4 smallertriangles. A triangle with 8 mesh nodes is onstruted from triangles with only twonodes and a triangle with 32 nodes is onstruted from those with 8 nodes. Observethat the triangles are onstruted so that preisely every other mesh node along thediagonal belongs to the nodes of the triangle. Thus an indexing sheme for a squaremesh an be obtained as shown in Fig. 2. Alternatively, Fig. 3 shows how for all k > 1an H-indexing through a square of size 4k is built from 4 H-indexings through squares1A Java program for the general ase of non-ubi meshes with arbitrary side-lengths an be foundat http://www-fs.informatik.uni-tuebingen.de/~reinhard/hurve.html.5
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Figure 2: Building an H-indexing for a square using two triangles.

Figure 3: Indutive onstrution priniple of H-indexings.of size 4k�1 eah. For subsequent proofs, however, it is more onvenient to make useof the onstrution priniple based on triangles.For omputer-assisted onstrution, we an desribe the H-indexing of a 2k � 2kmesh by expressing the oordinates x(i) and y(i) of the i-th point reursively in thefollowing way. Fig. 4 best demonstrates the subsequently given reurrenes for x(i)and y(i). The reurrenes relate diretly to the reursive onstrution priniple of H-urves. Consider Fig. 4: The H-Curve starts in the lower left orner with index 0. Leth := 4k=32, where 4k is the total number of mesh points. The H-urve �rst traverses the\triangle" (see Fig. 4) ontaining 0, then that ontaining h, then that ontaining 2h,then that ontaining 3h, until at g = 4h it enters the upper left quadrant. Fromthere it goes through f and then 2g and so on, always following some kind of trianglestruture. Most importantly, this triangle struture ats reursively, thus leading tothe somewhat ompliated reurrene given below. Its orretness has been hekedby omputer. Note that in Fig. 4, i and j are loated at some speial points, whih, aswill later be shown, form a \worst ase pair" of indies onerning the loality for theH-indexing.Observe that the subsequent parameter l is uniquely determined in eah reursive
6
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Figure 4: The positions of the points i and j for the worst ases. The reursion isshown for l = k � 1. Let g = 22l�1 and h = 22l�3.step by the if-onditions of the various ases; l ranges from k � 1 to 1.x(i) = 8>>>>>><>>>>>>:

2k � 1� x(i� 22k�1) if i � 22k�1;2l + x(i� 3 � 22l�1) if 4 � 22l�1 > i � 3 � 22l�1;2l � 1� x(3 � 22l�1 � 1� i) if 3 � 22l�1 > i � 2 � 22l�1;x(22l � 1� i) if 2 � 22l�1 > i � 1 � 22l�1;0 if i � 1:y(i) = 8>>>>>><>>>>>>:
2k � 1� y(i� 22k�1) if i � 22k�1;2l + y(i� 3 � 22l�1) if 4 � 22l�1 > i � 3 � 22l�1;2l + y(3 � 22l�1 � 1� i) if 3 � 22l�1 > i � 2 � 22l�1;2l+1 � 1� y(22l � 1� i) if 2 � 22l�1 > i � 1 � 22l�1;i if i � 1:The following results for \worst ase distanes" between points indexed by the H-urve are to be ompared with the subsequent Theorem 1 presenting upper bounds forthe loality of H-indexings. The Eulidean worst ase (f. Fig. 4) for eah k are pairsof points i = 3 � 22k�5 � 1 and j = 22k�3 + 1 with ji� jj = 22k�5 + 2 andd2(i; j) = p(x(i)� x(j))2 + (y(i)� y(j))2= p(2k�2 � 1� 2k�1 + 2)2 + (2k�2 � 2k�1 � 1)2= p4(22k�5 + 2)� 8 + 2 =p4ji� jj � 6:7
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The same pairs are also responsible for the worst ase in the Manhattan metri:d1(i; j) = jx(i)� x(j)j+ jy(i)� y(j)j= �2k�2 + 1 + 2k�1 � 2� 2k�2 + 2k�1 + 1 = 2k�1= p8 � 22k�5 =p8(ji� jj � 2):Thus, in both ases we observe the worst ases on a diagonal diretion (from i to j). Inthe maximum metri, however, the worst ases are from 0 to f = 22k�2� 1 (see Fig. 4)with j0� f j = 22k�2 � 1 andd1(i; j) = 2k � 1 = 2pj0� f j+ 1� 1:4.2 Upper boundsIn this subsetion, we give results for loality properties of H-indexings with respet tothe Eulidean, the Manhattan, and the maximum metri.Theorem 1. For two arbitrary indies i and j, i 6= j, on the H-indexing the followingis true:1. d1(i; j) �p8(ji� jj � 2) for ji� jj > 3,2. d2(i; j) �p4ji� jj � 2,3. d1(i; j) � 2pji� jj+ 1� 1.Observe that upper and lower bounds math for the Manhattan metri and themaximum metri. For the Eulidean metri we had a lower bound of p4ji� jj � 6whih is only O�1=pji� jj� away from the upper bound | less than an additiveonstant.Theorem 1 shows that H-indexings provide an improvement in loality ompared toHilbert-urves, answering an open question given by Gotsman and Lindenbaum [10℄.Fousing their attention on the Eulidean metri, they proved that for Hilbert urves Cwith respet to their loality measure L1(C) := maxi;j2f1;::: ;n2g;i<j d2(i; j)2=ji�jj it holds6 � (1�O(2�k)) � L1(C) � 20=3, where n = 2k with k > 1. Our result implies that forH-indexings C we have L1(C) = 4. To present our result of Theorem 1, we preferredto make a more onrete and more preise statement (whih even inludes additiveonstants) than the \L1(C)-notation" allows.Both the maximum metri and the Manhattan metri are of spei� relevane inparallel proessing [7, 21, 25℄. Another advantage of H-indexings over Hilbert index-ings is that they do not just desribe a Hamiltonian path, but a Hamiltonian ylethrough the mesh as well. This is useful, e.g., for parallel algorithms whih employommuniation along a virtual ring network. Interestingly, H-indexings are optimally8
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40Figure 5: Indexing nodes (f0; 1; 2; 3; 4; 5; 6; 7g) in a triangle of size 8 and their repre-sentatives (f00; 10; 20; 30; 40; 50; 60; 70g). Note that 10 and 30, 20 and 60, and 50 and 70 eahhave the same loation.loality-preserving among all Hamiltonian yles through a square mesh, as the nextsetion shows.As it turns out, proofs that give the above tight results inluding additive onstantsare fairly tehnial [22℄ and have been omitted here. As shown below, however, slightlyweaker results regarding the additive onstants an be proved in an elegant way.Theorem 2. For two arbitrary indies i and j on the H-indexing the following is true:1. d1(i; j) �p8ji� jj+ 4,2. d2(i; j) � 2pji� jj+p10,3. d1(i; j) � 2pji� jj+ 3.Proof. We onentrate on proving the result for the Eulidean metri d2(i; j). Thestatements for the Manhattan metri d1(i; j) and the maximum metri d1(i; j) theneasily follow by the general relationsd1(i; j) � p2 � d2(i; j)and d1(i; j) � d2(i; j):The proof for d2(i; j) works by indution on the size of the smallest triangle (a-ording to the onstrution priniple of H-urves) ontaining both i and j. Note thatall these triangles are right-angled and ontain 2l mesh points for l � 1. Hene theindution operates on l. For l = 1 and l = 2 the laim an be trivially heked. Con-sider a triangle of size 8 (8-triangle for short), that is, l = 3, as drawn in Fig. 5. For9
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eah of the nodes in an 8-triangle we assign a representative whih is loated on theorners of the 4 subtriangles as drawn in Fig. 5. The two representatives of a 2-triangleare determined as follows: If possible, rotate the 2-triangle in so that it has the sameorientation (the vertial athetus to the left, the horizontal athetus to the bottom)as the original 8-triangle. The two representatives are then (in the ase of Fig. 5) atthe endpoints of the vertial athetus. Observe that in Fig. 5 the 2-triangle ontainingnodes 4 and 5 annot be rotated in so that it has the same orientation as the 8-triangle.In this ase, we speak of the omplementary2 triangle and here the endpoints lie on thehorizontal athetus. Note that eah right-angled triangle an be brought (by rotation)in one of the orientations \one athetus as bottom line and one athetus either to theleft or to the right as vertial line."Let i and j be two arbitrary nodes and let l > 2. Let i0 and j 0 be the representativesof i and j, respetively, whih are obtained by applying the above rules to the 8-trianglesontaining i and j.We show by indution on l thatd2(i0; j 0) � 2pji0 � j 0j: (1)Observe that the numerial values of i and i0, j and j 0, respetively, are the same,only their geometri positions di�er a little. We introdue spei�ally the onventionthat a \2l-triangle" may ontain 2l + 1 representatives, where the 2l + 1st is alsothe �rst node of the subsequent triangle. This assumption is solely due to tehnialreasons. Our laim an be dedued from Equation (1), beause the Eulidean distanebetween an index i and its representative i0 (for example, 2 and 20) may be at mostp(1=2)2 + (3=2)2 = p10=2. Hene, d2(i; j) � d2(i0; j 0)+p10, in the Manhattan ase wehave d1(i; j) � d1(i0; j 0)+4, and in the maximum ase we have d1(i; j) � d1(i0; j 0)+3.It remains to prove Inequality (1) by indution on l. The laim for l = 1 and l = 2an be easily heked (f. Fig. 5). Now let i0 and j 0 be in two di�erent halves of their(smallest) \surrounding" triangle (otherwise the indution hypothesis applies). Due toour de�nition of representatives we an assume (up to rotation) a situation as drawnin Fig. 6. In Fig. 6, the point p loated at the right angle always represents a point inthe indexing and the angle between i0, p, and j 0 is at most 90o. Thus the Eulideandistane between i0 and j 0 an be bounded from above using Pythagoras' theorem andthe indution hypothesis: d2(i0; j 0) � qd22(i0; p) + d22(p; j 0)� p4ji0 � pj+ 4jp� j 0j= 2pji0 � j 0j:This veri�es Inequality (1) and the proof is ompleted.2The triangle mirrored at the vertial axis. 10
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Figure 6: Two representatives in the two halves of the smallest triangle ontainingboth of them.In the next setion, we show that H-indexings are quite lose to optimal loalitymesh-indexings.5 Lower boundsThis setion indiates that H-indexings might be optimal in loality-preservation amongall indexings of 2-D meshes. We onjeture that they are optimal for the Eulidean,the maximum, and the Manhattan metri. Due to the fat that the diÆulty for ageneral proof lies in \oming to grips with the loose ends," we support this onjetureby showing the optimality among the yli indexings.The idea at the ore of the lower bound proofs in this setion is desribed in thefollowing. As a rule, we pik a small number of points in the mesh. Every meshindexing has to traverse these points in some spei� order. Considering all possibleorders and having piked out these mesh points arefully, we an fous on the argumentthat no matter what the indexing is, two of the indies piked, i and j, must have meshdistane d(i; j) � pji� jj � d for onstants  and d. In the subsequent proofs, wegive values for  and d and prove their orretness by ontradition. The values for and d were found by analyzing some onrete examples and deriving from theseonjetures onerning  and d, whih are proved here. Generally, these lower boundproofs are based on ase distintions with respet to the order in whih the seletedmesh points are traversed by the indexing. The heart of all proofs is the well thoughtout seletion of the appropriate mesh points. These points an be onsidered a \worstase on�guration" valid for all mesh indexings, yielding our lower bounds.
11
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5.1 Eulidean and maximum metriTheorem 1 of Gotsman and Lindenbaum [10℄ says that for any disrete 2-D spae-�llingurve on an n � n-mesh, d2(i; j) > p3(1� 1=n)2ji� jj. They also report that by aomputerized exhaustive searh they have improved the onstant fator 3 to 3.25. Weimprove this to 3.5 by a diret proof. In addition, their result is only valid for ontinuousindexings, whereas ours poses no restritions on the indexing. We onjeture that thisan be raised to 4, implying the optimality of H-urves among all mesh-indexings (f.Theorem 1 and Theorem 2).In the following theorem we make use of the general relationship d1(i; j) � d2(i; j)by proving only the result for the maximum metri.Theorem 3. For eah indexing of an n�n-mesh, n � 2, there must be indies i and jwith d2(i; j); d1(i; j) > n=4 suh that d2(i; j); d1(i; j) �p3:5ji� jj � 1.Proof. Due to d2(i; j) � d1(i; j) it suÆes to restrit our attention to the maxi-mum metri. The proof is by ontradition. Assume on the ontrary that for all iand j with d1(i; j) > n=4 we have d1(i; j) < p3:5ji� jj � 1, that means ji � jj >(d1(i; j) + 1)2=3:5. In the following, we desribe something like a \worst ase on�g-uration" of some index loations in the mesh. We onsider the two ases representedby the two basi pitures below. All other ases are symmetri. Let i1 < i2 < i3 andi2 < i4 be the indies of the 4 orner points of the n � n-mesh. Sine we leave therelation between i3 and i4 open, the following desribes (exept for symmetri ases)all possibilities (f. [10℄). Note that the right-hand piture is neessary for the ase ofnon-ontinuous indexings.

i1i2 i4i3i0 i5 i1i3 i4i2i0 i5Let i0 be the rightmost point in the row between i1 and i4 with i0 < i2. Note thati0 = i1 is possible. The distane of i0 from i1 shall be m � 1. Therefore, the neigh-boring point i5 of i0 with i2 < i5 has distane n � m � 1 from i4. Generally, wehave two possible orders of i0 and i1 and six possible orders of i3, i4 and i5. Thus,�rst assuming n=4 < m < 3n=4 in order to make subsequent use of our assumptionji � jj > ((d2(i; j) + 1)2)=3:5, we derive the relationship shown below. Observe thatthe following is valid for both pitures above at the same time.
12



Discrete Applied Mathematics, Vol. 117(1–3), pp. 211–237, 2002n2 � minfji0 � i1j+ ji1 � i2j; ji1 � i0j+ ji0 � i2jg+minfji2 � i3j+ ji3 � i4j+ ji4 � i5j; ji2 � i3j+ ji3 � i5j+ ji5 � i4j;ji2 � i5j+ ji5 � i4j+ ji4 � i3j; ji2 � i5j+ ji5 � i3j+ ji3 � i4j;ji2 � i4j+ ji4 � i3j+ ji3 � i5j; ji2 � i4j+ ji4 � i5j+ ji3 � i3jg> 13:5 minf(d1(i0; i1) + 1)2 + (d1(i1; i2) + 1)2; (d1(i1; i0) + 1)2 + (d1(i0; i2) + 1)2g+ 13:5 minf(d1(i2; i3) + 1)2 + (d1(i3; i4) + 1)2 + (d1(i4; i5) + 1)2;(d1(i2; i3) + 1)2 + (d1(i3; i5) + 1)2 + (d1(i5; i4) + 1)2;(d1(i2; i5) + 1)2 + (d1(i5; i4) + 1)2 + (d1(i4; i3) + 1)2;(d1(i2; i5) + 1)2 + (d1(i5; i3) + 1)2 + (d1(i3; i4) + 1)2;(d1(i2; i4) + 1)2 + (d1(i4; i3) + 1)2 + (d1(i3; i5) + 1)2;(d1(i2; i4) + 1)2 + (d1(i4; i5) + 1)2 + (d1(i5; i3) + 1)2g= 13:5((m2 + n2)+minf2n2 + (n�m)2; 2n2 + (n�m)2; n2 + (n�m)2 + n2;3n2; 3n2; n2 + (n�m)2 + n2g)= m2 + 3n2 + (n�m)23:5 = 2m2 + 4n2 � 2nm3:5 = 3:5n2 + 2(n=2�m)23:5This is a ontradition.Now, turning to the ase m � n=4, we do not use i0 as a andidate point and asimilar alulation as above yields:n2 � 3n2 + (n�m)23:5 � 3n2 + (3n=4)23:5 = 3:5625n23:5 ;a ontradition. Analogously, if m � 3n=4, by eliminating i5 we getn2 � m2 + 3n23:5 � 3n2 + (3n=4)23:5 = 3:5625n23:5 :Compared to Theorem 3, the lower bound for the speial ase of yli indexingsan be obtained omparatively easily. Together with Theorem 1 it shows optimality ofH-indexings among all yli indexings up to small additive onstants.Theorem 4. For eah yli indexing of an n�n-mesh, n � 2, indies i and j must bepresent, so that d2(i; j); d1(i; j) � 2pji� jj � 1. This lower bound spei�ally appliesto the two orners i and j of the mesh.Proof. Let i1, i2, i3, and i4 be the 4 orner points of an n � n-mesh. Beause theindexing is yli (and thus also ontinuous, f. Setion 2) there must be two ornerpoints ij and ik with j; k 2 f 1; 2; 3; 4 g and j 6= k suh that jij � ikj � n2=4. On theother hand, d2(ij; ik) � d1(ij; ik) � n� 1 � 2pjij � ikj � 1.13
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5.2 Manhattan metriWhereas in the ase of the Eulidean and the maximummetri we ould give quite losebounds for the \general ase," this seems to be more problemati when dealing withthe Manhattan metri. In the general ase, we obtain the following, omparativelyweaker result, based on a more ompliated ase distintion onerning \worst aseon�gurations" of some index loations (as shown by the subsequent pitures).Theorem 5. For eah indexing of an n � n-mesh, n � 2, indies i and j must bepresent with d1(i; j) > 2n=5, so that d1(i; j) �p6:5ji� jj � 2.Proof. Assume the ontrary that for all i and j with d1(i; j) > 2n=5 we have d1(i; j) <p6:5ji� jj � 2, making ji � jj > (d1(i; j) + 2)2=6:5. We desribe the \worst aseon�gurations" needed for proving our result by the following four pitures. Let i1 <i2 < i5 < i6 be the indies of the 4 orner points of the n�n-mesh the indexing passesthrough in the given order. Then (exept for symmetri ases) we have the followingfour possibilities. Observe that the �rst piture omes into play beause we also allownon-ontinuous indexings.1. i1i5 i6i2 2. i1i2 i5i6i0 i4i3 i7 3. i1i2 i6i5i0i4 i3i7 4. i1i2 i6i5i0 i7In the seond to fourth piture, i0 is the rightmost point in the row ontaining i1 withi0 < i2 and distane m�1 from i1, and i7 is the leftmost point in the row ontaining i6with i5 < i7 and distane l � 1 from i6. Moreover, i3 and i4 are immediate lefthandand righthand neighbors of i7 and i0, respetively.1. The ase exhibited with the �rst piture is fairly easy to handle. Needing nofurther assumptions, we haven2 � ji1 � i6j = ji1 � i2j+ ji2 � i5j+ ji5 � i6j> (d1(i1; i2) + 2)2 + (d1(i2; i5) + 2)2 + (d1(i5; i6) + 2)26:5� 4n2 + n2 + 4n26:5 = 9n26:5 ;a ontradition.

14
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2. In the ase referring to the seond piture, if i4 < i3, then we haven2 � ji0 � i7j = ji0 � i2j+ ji2 � i4j+ ji4 � i3j+ ji3 � i5j+ ji5 � i7j> (d1(i0; i2) + 2)2 + (d1(i2; i4) + 2)2 + (d1(i4; i3) + 2)26:5+(d1(i3; i5) + 2)2 + (d1(i5; i7) + 2)26:5� (n+m)2 + (n+m)2 + (2n�m� l)2 + (n+ l)2 + (n+ l)26:5= 8n2 + 3m2 + 2ml + 3l26:5 � 8n26:5 :If m + l � n=2 thenn2 � ji0 � i7j = ji0 � i2j+ ji2 � i5j+ ji5 � i7j> (n +m)2 + 4n2 + (n+ l)26:5 = 6n2 + 2(m+ l)n+m2 + l26:5 � 7n26:5 ;otherwise (i.e., m + l < n=2 and i3 < i4) we have to distinguish between threesub-ases. First assume that i3 < i1. Thenn2 � ji3 � i5j = ji3 � i1j+ ji1 � i2j+ ji2 � i5j> (2n� l)2 + n2 + (2n)26:5 = 9n2 � 4ln+ l26:5 � 7n26:5 :If i4 > i6, we get the same for reasons of symmetry.Finally, if i1 < i3 and i4 < i6, thenn2 � ji1 � i6j = ji1 � i3j+ ji3 � i4j+ ji4 � i6j> (2n� l)2 + n2 + (2n�m)26:5 � 9n2 � 4(m+ l)n6:5 � 7n26:5 :3. With respet to the third piture, we haven2 � ji0 � i7j = ji0 � i2j+ ji2 � i4j+ ji4 � i5j+ ji5 � i7j> (n+m)2 + (n+m)2 + (2n�m)2 + (n+ l)26:5� 7n2 + 3m2 + 2nl + l26:5 � 7n26:5 :4. The last piture di�ers from the third ase in that i0 and i7 are now immedi-ate neighbors. In addition, for reasons of symmetry we assume without loss ofgenerality that m � n=2 (otherwise, the roles of i0 and i7 will interhange). Ifm � 0:418n, then n2 � ji1 � i7j = ji1 � i5j+ ji5 � i7j> (2n)2 + (1:582n)26:5 = (4 + 2:502)n26:5 :15
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If i0 < i1, thenn2 � ji0 � i7j = ji0 � i1j+ ji1 � i5j+ ji5 � i7j> m2 + (2n)2 + (2n�m)26:5 = 8n2 + 2m2 � 4nm6:5= 6:5n2 + (n� 2m)2=2 + (n� 2m)n6:5 � 6:5n26:5 :If i7 < i6 thenn2 � ji1 � i6j = ji1 � i5j+ ji5 � i7j+ ji7 � i6j> (2n)2 + (1:5n)2 + (0:5n)26:5 = (4 + 2:25 + 0:25)n26:5 :Otherwise we have 0:418n < m � n=2, i1 < i0, and i6 < i7. Thenn2 � ji1 � i7j = ji1 � i0j+ ji0 � i2j+ ji2 � i6j+ ji6 � i7j> m2 + (n+m)2 + (2n)2 + (n�m)26:5 = 6n2 + 3m26:5 > 6:5n26:5 ;again a ontradition.This ompletes the proof.In the speial yli ase, however, we an again prove (asymptoti) optimality ofH-urves due to the following theorem.Theorem 6. For eah yli indexing of an n� n-mesh, n � 2, indies i and j mustbe present, so that d1(i; j) � p8ji� jj � 2. This lower bound spei�ally applies if iand j are in two diagonally opposite orners of the mesh.Proof. By de�nition of a yli indexing, ji � jj � n2=2 for all i and j in an n � nsquare. Consequently, we have for two diagonally opposite orners i and j, d1(i; j) =2n� 2 � 2p2ji� jj � 2 =p8ji� jj � 2.6 Mehanizing proofs for upper boundsThe primary goal of this setion is to introdue a tehnique, whereby it is possibleto derive loality properties of self-similar indexings by mehanial inspetion. InSetion 6.1, we start with the well know 2-D Hilbert indexing and give a more ompleteproof of the tight bound for the Manhattan distane already found in [7℄, whih does notneed tedious manual ase distintions. Then, in Setion 6.2 we develop a more widelyappliable tehnique and apply it to other metris and to 3-D Hilbert indexings.

16
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yFigure 7: Hilbert indexings of size 4 and 16 and the general onstrution priniple.6.1 The Hilbert indexingFig. 7-(a) shows the two smallest Hilbert indexings for meshes of size 4 and 16.Fig. 7-(b) shows the general onstrution priniple. For any k � 1, four Hilbert index-ings of size 4k are ombined into an indexing of size 4k+1 by rotating and reeting themin suh a way that onatenating the indexings yields a Hamiltonian path through themesh. Note that the left and the right side of the urve are symmetrial to eah other.Consequently, we need only keep trak of the orientation of the edge whih ontainsthe start and end of the urve (drawn with bold lines here).3 We start with a lowerbound for the loality:Theorem 7. For every k � 1, indies i and j are present on the Hilbert indexing, sothat ji � jj = 4k�1 and the Manhattan-distane of i and j is exatly 3pji� jj � 2 =3 � 2k�1 � 2.Proof. Consider Fig. 8. It shows parts of the Hilbert indexing (rotated 90 degrees to theright ompared to Fig. 7). It suÆes to show that the indies i and j in the lower left andupper right orner of the shaded area of Fig. 8 have Manhattan-distane 3pji� jj�2.We must ompute the size of the shaded area whih denotes all nodes on the Hilbertindexing lying between i and j. We always draw the largest subsquare �lled by theHilbert indexing on the path from i to j. In this sense, the dotted line represents thepath of the Hilbert indexing respetive of the sizes of the largest subsquares it passesthrough. Exept for the lower left orner and upper right orner we have exatly threesubsquares of size 2l � 2l within the shaded area for eah 0 � l < k � 1. As theshaded area of the left half an be mapped onto the unshaded area in the right halfof Fig. 8 (exept for one mesh node remaining), we get ji � jj = 4k�1. Computing3pji� jj � 2 = 3 � 2k�1 � 2, we obtain the Manhattan-distane of i and j exatly,where the latter an easily be read from Fig. 8.3We note without proof that the above rule uniquely de�nes the Hilbert indexing up to globalrotation and reetion. In a sense, the Hilbert urve is the \simplest" self-similar, reursive, loality-preserving indexing sheme for square meshes of size 2k � 2k. More details an be found in [2℄.17
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Figure 8: Worst-ase for the Manhattan-distane between two indies i and j.Before we ome to the mathing upper bound, we need a tehnial lemma thatshows how we an bound maxji�jj=m d(i; j) for a �xed m by inspeting a �nite numberof segments. These are those segments of length m whih either lie within a singleindexing of size 4dlog4 me or within two suh sub-grids. For the latter ase there are foursubases for the four di�erent relative orientations of two subgrids shown in Fig. 9.This method works for an arbitrary norm k�k.Lemma 8. Let x(i) and y(i) denote the x-oordinate and y-oordinate of the ith pointin the Hilbert indexing. Letdint(m) := max�d(i; j) : ji� jj = m ^ 0 � i < j < 4dlog4me	 anddext(m) := maxi0+j0=m�1max k(jx(j0)�y(i0)j;1+y(j0)+x(i0))kk(jx(j0)�x(i0)j;1+y(j0)+y(i0))kk(1+x(j0)+y(i0);jy(j0)�x(i0)j)kk(1+x(j0)+x(i0);jy(j0)�y(i0)j)k! :Then 8i; j : d(i; j) � max(dint(ji� jj); dext(ji� jj)).Proof. Consider any segment size m and any indies i and j with ji� jj = m. W.l.o.g.assume j > i and let k = dlog4me.(1) Case 8l 2 fi+ 1; : : : ; jg : l 6� 0 mod 4k: Due to the self-similarity of the Hilbertindexing, the segment (i; j) is isomorphi to the segment (i mod 4k; j mod 4k). Thissegment has already been heked by omputing dint(m).(2) All other ases: There is exatly one l with i < l � j and l � 0 mod 4k. Dueto the self-similarity and symmetry of the Hilbert-indexing, the segments (l; j) and(i; l � 1) are isomorphi to the segments (0; i0) and (0; j 0) respetively where j 0 = j � land i0 = l � i � 1. There are only four di�erent ways (disregarding rotation andreetion) the segments (l; j) and (i; l � 1) an be oriented toward eah other. Fig. 918
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Figure 9: Possible relative orientations of two Hilbert-squares, where i0 orresponds tothe term l � i� 1 in the proof of Lemma 8 and j 0 orresponds to j � l.shows the ways in whih this is possible. For eah of these four ases, a formuladesribing the distane vetor between the points i and j an be derived as follows:In one diretion, the distane between the two points is one (the distane betweenthe two subsquares) plus the sum of two oordinates from points i0 and j 0 (using thestandard orientation of the Hilbert-indexing). In the other diretion, the distane is thedi�erene between the other two oordinates of i0 and j 0. For example, if the subsquaresare arranged as in the leftmost part of Fig. 9, we have to add one, y(j 0), and x(i0) inorder to get the distane in the x-diretion while the distane in the y-diretion isjx(j 0)� y(i0)j. The inner maximization for the de�nition of dext heks the norms ofthe four possible distane vetors. The outer maximization overs all possible valuesfor l.This result will later be used in its full generality. It should be emphasized herethat Lemma 8 an be veri�ed mehanially by a simple omputer program. For now,we onentrate on the Manhattan metri:Theorem 9. For the Manhattan-distane of two arbitrary indies i and j on the Hilbertindexing with i 6= j, we have d1(i; j) � 3pji� jj � 2.Proof. The fundamental goal here is to exploit the self-similarity of the Hilbert indexingfor an indutive proof over ji� jj. In priniple, the proof is quite simple. However, itproves to be the ase that a speial treatment is neessary for \small" meshes and forindies i and j whih are lose to the worst ase desribed in Theorem 7.(1) Case ji� jj < 16: Apply Lemma 8 for ji� jj 2 f1; : : : ; 15g.(2) Case ji � jj � 16: By indution over ji � jj we prove the following strongerstatement: d1(i; j) � 3pji� jj � 2:5 or i and j are arranged as in Theorem 7 (Fig. 8)19
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and d1(i; j) = 3pji� jj � 2.(2.1) Basis of indution, 16 � ji � jj � 80: Apply Lemma 8 for ji� jj 2f16; : : : ; 80g. Note that this an be done mehanially by a simple omputer program.(2.2) Indutive step for ji� jj > 80: We look at the \oarsened" indexing de�nedby onsidering eah 2�2 subsquare starting at even oordinates as a single mesh node.Due to the self-similarity of the Hilbert indexing, the oarsened indexing is itself aHilbert indexing.De�ne a 2 N , b 2 f0; 1; 2; 3g,  2 N and d 2 f0; 1; 2; 3g, so that i = 4a + b andj = 4+ d. In the oarsened indexing, the positions of i and j are a and  respetively.Sine ja � j � 16, we an apply the indution hypothesis. Furthermore, d1(i; j) �2 � d1(a; ) + 2 beause for eah of the four mesh-positions in subsquare a there is aorresponding mesh-position in subsquare  whih is 2 � d1(a; ) steps away; at worstj an be another two steps away from the mesh-position orresponding to i. We nowdistinguish two ases regarding the relative positions of a and .(2.2.1) a and  are not arranged as in Theorem 7: By the indution hypothesiswe have d1(a; ) � 3pja� j � 2:5 and therefored1(i; j) � 2(3pja� j � 2:5) + 2 = 6pja� j � 3 :Substituting a = i�b4 and  = j�d4 we getja� j = j(i� b)� (j � d)j4 � ji� jj+ jd� bj4 � ji� jj+ 34and therefore d1(i; j) � 3pji� jj+ 3�3. A simple alulation shows that 3pji� jj+ 3 �3pji� jj+ 0:5 for ji� jj � 80 and therefore d1(i; j) � 3pji� jj � 2:5.(2.2.2) a and  are arranged as in Theorem 7: With the exeption of symmetrialases the 2�2-subsquares for i and j are numbered � 0 31 2 � and � 0 13 2 � and the subsquarefor j is above and to the right of the subsquare for i (refer to Fig. 8). There are twosubases:(2.2.2.a) b = d = 1: i and j are also arranged as in Theorem 7 and we getd1(i; j) = 2(3pja� j � 2) + 2 = 3r4j i� 14 � j � 14 j � 2 = 3pji� jj � 2as desired.(2.2.2.b) Else: We an use the estimate d1(i; j) � 2d1(a; ) + 1 beause the worstase, in whih d1(i; j) = 2d1(a; ) + 2, has already ourred in the ase b = d = 1. Aalulation similar to the previous shows thatd1(i; j) � 2(3pja� j � 2) + 1 = 6pja� j � 3 � 3pji� jj � 2:5 :20
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6.2 A generalized tehnique and its appliationsThere are few instanes where the proof of Theorem 9 makes expliit use of the prop-erties of the Hilbert indexing or the Manhattan metri. We now o�er a generalizedtehnique whih an be applied to a wide spetrum of self-similar indexings in r-dimensional meshes made up of building bloks of size q1, : : : , qr and a norm k�k.However, for simpliity we restrit the presentation to ubi building bloks with side-length q and only show how slightly looser upper bounds than those of Theorem 9 anbe proved. The latter relaxation allows us to avoid the speial treatment of the worstase segments whih is neessary in the proof of Theorem 9.Theorem 10. Given any indexing sheme for r-dimensional meshes with the propertythat ombining eah elementary ube of size qr from a mesh of size qkr into a singlemeta-node yields the indexing for a mesh of size q(k�1)r:If 8q(k�1)r � ji� jj � qkr : d(i; j) � �( rpji� jj � Æ)� �where � := k(1; : : : ; 1)k and Æ � rpqkr + qr � 1� qkq � 1then 8ji� jj � q(k�1)r : d(i; j) � �( rpji� jj � Æ)� �.The proof of Theorem 10 is quite analogous to the Proof of Theorem 9:Proof. By indution over ji � jj. Let a = bi=qr, b = i mod qr,  = bj=qr, andd = j mod qr. Due to the self-similarity of the indexing sheme, we an apply theindution hypothesis to a and  if ji� jj � qkr. We �nd d(i; j) � q � d(a; ) + �(q � 1)beause for eah of the qr mesh-positions in subube a there is a orresponding mesh-position in subube  whih is q � d(a; ) steps away; at worst j an be another �(q� 1)steps away from the mesh-position orresponding to i (the diameter of a ube of sidelength q). Using the indution hypothesis, we have d(a; ) � �( rpja� j � Æ)� � andtherefored(i; j) � q(�( rpja� j � Æ)� �) + �(q � 1) = q � �( rpja� j � Æ)� � :Substituting a = i�bqr and  = j�dqr we getja� j = j(i� b)� (j � d)jqr � ji� jj+ jd� bjqr � ji� jj+ qr � 1qrand therefore d(i; j) � �( rpji� jj+ qr � 1� qÆ)� �. A simple alulation shows thatrpji� jj+ qr � 1� qÆ � rpji� jj � Æ for ji� jj � qkr and Æ � rpqkr+qr�1�qkq�1 .Theorem 10 an be applied so that it yields upper bounds for d(i; j). However, theadditive onstant Æ and|exept for the Manhattan metri|the additive onstant � areartifats of the indutive proof. If we do not want to make ase distintions involvingspeial properties of worst ase segments as in the proof of Theorem 9, we have to aept21
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Figure 10: Relative ube orientations to be heked for bounding maximum distanesfor a given segment size.a small inrease in the multipliative fator � whih ompensates for the additiveonstants if ji � jj is large. The ase of small ji � jj an be resolved mehanially.Consider the following proedure for obtaining bounds of the form d(i; j) � � rpji� jj+ where  is some onstant to be determined.� Determine q and r from the de�nition of the indexing.� Fix a value k for the mesh size to be inspeted.� Set Æ = rpqkr + qr � 1� qkq � 1 and � := k(1; : : : ; 1)k.� Make use of the self-similarity of the indexing to �nd an analog to Lemma 8whih makes it possible to bound d(i; j) for indies with ji� jj = m using somemehanizable method.� Find a onstant �, so that d(i; j) � �( rpji� jj� Æ)�� for q(k�1)r � ji� jj � qkrwhere Æ and � are de�ned as in Theorem 10. Applying Theorem 10 we aninfer that the same is true for ji � jj � qkr, i.e. 8ji � jj � q(k�1)r : d(i; j) ��( rpji� jj � Æ)� � � � rpji� jj � �.� Find a onstant  � �� suh that d(i; j) � � rpji� jj+  for ji� jj � q(k�1)r.� We an now onlude from the two points above that for all i, j, d(i; j) �� rpji� jj+ .In the following, we will simply use  = 0 (whih will always suÆe) in order to indiatethat the additive onstants are not tight. Also, we will only ite the tightest onstantfator for an upper bound as given by our method without repeating the point that theonstrutive nature of the method also yields a lower bound with a lose-by onstantfator. 22
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2-D Hilbert indexingsUsing the above method and by applying a small omputer program4 to the ase k = 8,we an infer a bound for the Eulid metri of d2(i; j) � p6 + 0:01pji� jj, whih is verylose to the lower bound of p6ji� jj � 2� 1 aording to Gotsman and Lindenbaum[10℄. A signi�ant improvement of the upper bound d2(i; j) � q6 + 23pji� jj isderived in the same paper.Trivially, the same bound also applies to the maximum metri for whih Gotsmanand Lindenbaum reported the same onstant fators of p6 and q6 + 23 for lower andupper bounds respetively.Symmetri 3-D Hilbert indexings

(b)(a) (c)Figure 11: Rule for building 3-D Hilbert indexings of order k from indexings of orderk � 1. The bottom front edge of the new ube is distinguished by the fat that theindexing starts and ends there. The orresponding edges of the omponent ubes aredrawn with thik lines. The order k � 1 ubes have to be rotated aordingly.We have also applied the above tehnique to the three variants of a 3-D Hilbert indexingshown in Fig. 11. Up to rotation and reetions, these are the only variants whih aresymmetrial with respet to an axis. The maximum segment distanes an be hekedin a omplete analogy of Lemma 8: Now nine relative orientations are to be heked.5Applying the \method" for variants (b) and () with k = 5 yields d1(i; j) �4:820661 3pji� jj and the systemati searh disovers indies with d1(i; j) �4:820248 3pji� jj. Variant (a) has a slightly better loality: d1(i; j) � 4:6161 3pji� jj�3 for large ji � jj, whih also applies for small ji � jj using a slightly looser additiveonstant. In omparison, the best previous bound has the onstant fator 8= 3p4 � 5:04[6℄.4Available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/eulid2..5A C-program doing the neessary heks is available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/hek3d.. 23
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Variant (a) is also slightly superior using the Eulidean metri, where we getd2(i; j) � 3:212991 3pji� jj for variant (a) and d2(i; j) � 3:245222 3pji� jj for variants(b) and () when we apply a simple program6 for k = 4. As opposed to the 2-D ase,the maximum metri allows smaller bounds than the Eulidean metri in the 3-D ase.We get d1(i; j) � 3:076598 3pji� jj for variant (a) and d1(i; j) � 3:104403 3pji� jjfor variants (b) and ().7The method ould also be applied to the asymmetrial variants of the Hilbertindexing desribed in [6℄. We only have to hange the proedure for heking maximumsegment sizes in order to take segments starting at both ends of a ube indexing intoaount. Even generalizations to more ompliated shemes, like the H� indexingdesribed in [6℄, seem possible. (This sheme appears to have a better loality thansimple Hilbert indexings.) H� uses two non-isomorphi building bloks to de�ne largerindexings. But it still has the ruial property that the replaement of a 2�2�2 ubewith a unit ube yields an instane of the indexing.7 ConlusionLoality-preserving indexing shemes are inreasingly beoming a standard tehniqueby whih to devise simple and eÆient algorithms for mesh-onneted omputers, pro-essing geometri data, image proessing, data strutures, and several other �elds. Themethods developed here help to use the term \loality-preserving" in an aurate quan-titative sense. This makes it possible to show that for the most important 2-D ase,the newly presented H-indexing is superior with respet to loality ompared with thepreviously used Hilbert indexing. We onjeture that H-indexings are atually opti-mal among all possible indexing shemes, although we ould only prove this for yliindexings thus far. This applies to the Eulidean as well as the maximum and theManhattan metris.Our tehniques for mehanially deriving upper bounds make it possible to quiklygain insight into the loality properties of indexing shemes. In partiular, it waspossible to give new, almost tight bounds for the 2-D Hilbert indexing with respet tothe Eulidean metri and the maximum metri and also for the symmetri 3-D Hilbertindexings. In the following table we summarize our loality bounds for 2-D indexingsand also inlude the results from [18℄ for Peano indexings, where it is remarkablethat a variant of the Peano indexing yields better results than the Hilbert indexing inmaximum metri:6Available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/eulid3d..7The program is available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/max3d..
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d(i; j) (2-D) Eulidean maximum ManhattanGeneral lower bound p3:5ji� jj � 1 p3:5ji� jj � 1 p6:5ji� jj � 2Cyli lower bound p4ji� jj � 1 p4ji� jj � 1 p8ji� jj � 2Upper bd. H-urve p4ji� jj � 2 p4ji� jj+ 4� 1 p8(ji� jj � 2)Upper bd. 2-D Hilbert p6:01ji� jj p6:01ji� jj p9ji� jj � 2Upper bd. Peano-urve p8ji� jj p8ji� jj p(10:66ji� jj)Upper bd. Peano-urve2 p6:25ji� jj p5:625ji� jj p(10ji� jj)With the advent of 3-D mesh-onneted omputers, suh as the Cray T3E, theinreasing interest in proessing 3-D geometrial data and the growing importane ofmultidimensional data strutures means that loality-preserving 3-D mesh indexingswill beome more important.8 The following table summarizes loality bounds for 3-D indexings. The rather tehnial proofs of these results are ontained in the tehnialreport [22℄ orresponding to this paper. In partiular, the table provides upper boundsfor some symmetri 3-D variants of the Hilbert indexing. Note that here we still havea signi�ant gap between upper and lower bounds.d(i; j) (3-D) Eulidean maximum ManhattanGeneral lower bound 3p11:1ji� jj � p3 3p8:25ji� jj � 1 3p42:625ji� jj � 3� 2:23 3pji� jj � p3 � 2:02 3pji� jj � 1 � 3:49 3pji� jj � 3Cyli lower bound 3p12:39ji� jj � p3 3p9ji� jj � 1 3p54ji� jj � 3� 2:31 3pji� jj � p3 � 2:08 3pji� jj � 1 � 3:77 3pji� jj � 3U. bd. 3-D Hil. (a) 3p33:2ji� jj 3p29:2ji� jj 3p98:4ji� jj� 3:22 3pji� jj � 3:08 3pji� jj � 4:62 3pji� jjU. bd. 3-D Hil. (b,) 3p34:2ji� jj 3p30:0ji� jj 3p112:1ji� jj� 3:25 3pji� jj � 3:11 3pji� jj � 4:83 3pji� jjFuture workThere is a number of interesting open questions. One of these is to lose the gapbetween the upper and lower bound for non-yli 2-D indexings and, in partiular, for3-D indexings.Mehanial inspetion methods will play an important role in investigating otherindexings in partiular for higher dimensions and for more ompliated onstrutionrules. The inspetion methods themselves an be re�ned in various ways. They an beadapted to indexing shemes whih are not based on ombining ubi elements if weuse a top-down deomposition rather than a bottom-up deomposition. For example,for some onstant k0, an H-indexing of size 2k � 2k ould be partitioned into 2 � 4k0triangles of area 2k�k0�1 without �xing k. The onstrution priniple for the H-urve8On modern parallel mahines, good loality has mainly the indiret e�et of inreasing the usablebandwidth whereas the lateny due to the distane in the network is negligible ompared to otheroverheads. So is would also be interesting to study bandwidth diretly.25
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