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Abstra
tThe eÆ
ien
y of many data stru
tures and algorithms relies on \lo
ality-preserving"indexing s
hemes for meshes. We 
on
entrate on the 
ase in whi
h the maximal distan
ebetween two mesh nodes indexed i and j shall be a slow-growing fun
tion of ji�jj. Wepresent a new 2-D indexing s
heme we 
all H-indexing , whi
h has superior (possiblyoptimal) lo
ality in 
omparison with the well-known Hilbert indexings. H-indexingsform a Hamiltonian 
y
le and we prove that they are optimally lo
ality-preservingamong all 
y
li
 indexings. We provide fairly tight lower bounds for indexings withoutany restri
tion. Finally, illustrated by investigations 
on
erning 2-D and 3-D Hilbertindexings, we present a framework for me
hanizing upper bound proofs for lo
ality.Keywords: spa
e-�lling 
urve, self-similar 
urve, lo
ality-preserving mesh-indexing,lo
ality-preserving grid-indexing, Hilbert-
urve, lower bound, fra
tal
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1 Introdu
tionFor many �elds in 
omputer s
ien
e, indexing s
hemes for meshes, that is, bije
tivemappings f0; : : : ; n� 1gr ! f0; : : : ; nr � 1g, plays a 
ru
ial role. For example, in
omputational geometry one often has to map an r-dimensional mesh onto a one-dimensional traversal order or storage order. In this 
ase, it is often advantageousif 
lose-by raster points have 
lose-by indi
es [3℄. Analogous problems also arise inevaluating di�erential operators or even in a biologi
al setting [20℄. A 
on
eptualproblem with this notion of lo
ality is that there are always raster points that are farapart from some other raster points. The 
onverse notion of lo
ality applies when aone-dimensional data stru
tures is mapped to a multi-dimensional mesh. Here we areinterested in indexing s
hemes whi
h map 
lose-by indi
es to 
lose-by raster points.We will use the term r ! 1 lo
ality for the �rst notion and the term 1 ! r lo
alityfor the latter. 1 ! r lo
ality has the advantage that there are indexings for whi
hlo
ality 
an be a
hieved for all indi
es. Lo
ality of type 1 ! r is also natural forappli
ations in parallel pro
essing on mesh-
onne
ted 
omputers, where one often hasto map one-dimensional data stru
tures to the pro
essor-mesh. If the 
ommuni
ationrequirements within this data stru
ture are predominantly between 
lose-by indi
es,it is advantageous to map them to 
lose-by pro
essors in order to de
rease network
ontention and laten
y [6, 7, 21, 25℄. In this paper, we therefore 
on
entrate on 1! rlo
ality. We 
on
entrate on worst 
ase bounds|for example, this is the only way toex
lude bottlene
ks in parallel programs.Several mesh-indexing s
hemes are well-known. Most of these have been developedfor the two-dimensional 
ase, but they usually have generalizations for multiple dimen-sions, for example, row-major or snakelike row-major. However, taking a 
loser lookat appli
ations in parallel pro
essing, one may observe that these kinds of indexingsdo not preserve lo
ality of 
omputation and 
ommuni
ation very well. For example,for an r-dimensional mesh with side-length n and generalized row-major indexing, pro-
essors 0 and n � 1 are at distan
e n � 1 from ea
h other. Hen
e, a 
ommuni
ationbetween these two pro
essors ties up n � 1 
ommuni
ation links and has a high la-ten
y. This is large 
ompared to the distan
e of about r rpn a
hievable if the �rst npro
essors 
ould be arranged in a 
ube. A lo
ality-preserving indexing should yield adistan
e f(n) 2 O( rpn). This should generalize to all pairs of pro
essors within themesh, that is, pro
essors indexed i and j should be at most at distan
e f(ji� jj) fromea
h other. For example, a simple parallel variant of qui
ksort 
an be shown to runin average time � �(n+ logm)mnr � for m � nr elements on nr pro
essors if a lo
ality-preserving indexing s
heme is used. This is asymptoti
ally optimal and 
omparedto other asymptoti
ally optimal algorithms only � (logn) rather than � (n) messagesare sent on the 
riti
al exe
ution path [25℄. Qui
ksort, using row-major indexing andrelated s
hemes, needs time � �(n logn+ logm)mnr �. Various other appli
ations in par-1
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allel pro
essing are dis
ussed in [7, 15, 19℄. Further appli
ations of this kind of lo
ality
an be found in image pro
essing and related �elds (see [10℄ and the referen
es 
itedthere). See Se
tion 3 for additional dis
ussion.In this paper, we 
onsider 1! r lo
ality in mesh-indexings using (dis
rete) spa
e-�lling 
urves. To analyze lo
ality, we always make use of the three most importantmetri
s in use: Manhattan, Eu
lidean, and maximum. One of the main 
ontributionsof this paper is the introdu
tion of so-
alled H-indexings for two-dimensional meshes,whi
h are based on a variant of the 2-D Sierpi�nski 
urve. H-indexings possess betterlo
ality than Hilbert indexings. In fa
t, we 
onje
ture that they are optimally lo
ality-preserving among all mesh-indexings. In other words, with respe
t to the Eu
lideanmetri
, we believe that for an n�n-mesh, n � 2, in ea
h indexing there must be indi
esi and j with d2(i; j) �p4ji� jj � 
, where 
 is some small 
onstant.We 
an show at least that this is true for the 
lass of 
y
li
 indexings. For example,we prove for H-indexings and the Eu
lidean metri
 d2(i; j) � p4ji� jj � 2 for arbi-trary indi
es i and j. This is tight up to a small additive 
onstant. This answers anopen question from Gotsman and Lindenbaum [10℄ 
on
erning the existen
e of a fam-ily of spa
e-�lling 
urves with lo
ality properties better than those of Hilbert 
urves,where we have a 
onstant fa
tor of p6 instead of 2. Additionally, we have improvedlower bounds for the lo
ality attained through arbitrary indexings with respe
t to allthree metri
s mentioned above. Furthermore, we develop a te
hnique for �nding upperlo
ality bounds by me
hani
ally inspe
ting a �nite number of 
ases. Consequently, thisis applied to the 2-D Hilbert indexing and 3-D variants of the Hilbert indexing. Thisapproa
h enables us to obtain simple and 
omplete proofs of results that are new orpreviously relied on diÆ
ult to 
he
k proofs involving tedious manual 
ase distin
tions.The paper is stru
tured as follows. We introdu
e some notation in Se
tion 2 andreview related work in Se
tion 3. In Se
tion 4, we introdu
e H-indexings and show thatthey provide a better lo
ality than 2-D Hilbert indexings. The general lower boundsindi
ating that the H-indexings may indeed be optimal are derived in Se
tion 5. Thete
hnique for me
hani
ally deriving upper bounds is developed in Se
tion 6. Thiste
hnique is shown by a simple yet 
omplete proof for the lo
ality properties of the 2-DHilbert indexing with respe
t to the Manhattan metri
. Then we adapt this method,so that it 
an be applied to 3-D variants of the Hilbert indexing and also in
lude theEu
lidean and maximum metri
s. Se
tion 7 summarizes the results of the paper andpoints out some areas requiring future resear
h.2 PreliminariesIn this paper, we work with 2-D and 3-D meshes (or, equivalently, grids). We 
on-
entrate on quadrati
 and 
ubi
 grids, where, for example, in the 2-D 
ase we haven2 points arranged in an n � n-array. Meshes o

ur in various settings su
h as paral-2
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lel 
omputing, data stru
tures, image pro
essing, and many other �elds of 
omputers
ien
e. In the following, we restri
t the des
ription of some basi
 
on
epts to the 2-D
ase. Transferring this to a 3-D ( and r-D) setting is straightforward.We are interested in indexing s
hemes for meshes. An indexing s
heme is simplya bije
tive mapping of f0; : : : ; n2 � 1g onto f0; : : : ; n � 1g � f0; : : : ; n � 1g, thusproviding a total ordering of the mesh points. We will study dis
rete spa
e-�lling 
urvesand 
onsider them to be spe
ial kinds of indexing s
hemes, whi
h possess the desiredproperty of lo
ality preservation. To de�ne lo
ality, we �rst need a metri
. We will usethe Manhattan metri
 d1(a; b) = ka� bk1, the Eu
lidean metri
 d2(a; b) = ka� bk2,and the maximum metri
 d1 = ka� bk1 where k(x; y)k� := lim�!�(jxj� + jyj�)1=�.By using the terms x(i) and y(i) we denote the position of a point i within the gridwith respe
t to Cartesian 
oordinates.A dis
rete spa
e-�lling 
urve C : f0; : : : ; n2� 1g ! f0; : : : ; n� 1g�f0; : : : ; n� 1gful�lls d1(C(i); C(i + 1)) = 1. Thus one might say that spa
e-�lling 
urves provide
ontinuous indexings. A spa
e-�lling 
urve traverses the grid making unit steps andturning only at right angles. The meaning will always be 
lear from the 
ontext.Another feature of spa
e-�lling 
urves, besides being 
ontinuous, is usually their self-similarity . Self-similarity here simply means that the 
urve 
an be generated by puttingtogether identi
al (basi
 
onstru
tion) units, applying only rotation and re
e
tion tothese units. This be
omes more obvious when 
onsidering the 
onstru
tion prin
iplesof Hilbert and H-
urves in subsequent se
tions. To simplify presentation, in this paperthe symbol i refers to its geometri
 lo
ation (x(i); y(i)) as well as to its index value. Asegment (i; j) of a spa
e-�lling 
urve is the set fC(i); : : : ; C(j)g of mesh nodes. Ourmeasure of lo
ality is based on the requirement that for 
lose-by indi
es i, j, with smallji� jj, the distan
e d(i; j) de�ned by one of the above metri
s should also be small.We 
all a 
ontinuous indexing 
y
li
 if d2(0; n2 � 1) = 1. In this 
ase we 
omputemodulo n2, that is, we use the additive group (f0; : : : ; n2 � 1g;+) for adding andsubtra
ting indi
es. Also, for 
y
li
 indexings jij will denote the di�eren
e between iand 0 modulo n2, thus jij � n2=2. Put simply, these assumptions express the following:For 
y
li
 indexings it is unimportant at whi
h point the numbering starts.3 Related workWe 
ite some of the more re
ent papers from various �elds dealing with lo
ality ques-tions for meshes and using spa
e-�lling 
urves as indexing s
hemes. We pay parti
ularattention here to the �eld of parallel pro
essing and give a short a

ount of the devel-opment of lo
ality-preserving indexings in this �eld.Whereas we are studying 1 ! r lo
ality, r ! 1 lo
ality is for example studied byMit
hison and Durbin [20℄, who present some optimal results for this setting. Referalso to the paper of Gotsman and Lindenbaum [10℄ for a short dis
ussion on various3
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lo
ality measures and related results. Lo
ality of type r ! 1 is important whengeometri
al data is to be mapped onto a one-dimensional domain, e.g, in parallelgravitational parti
le simulation [26℄, for graph partitioning [14℄ and fast range queriesfor geometri
al data stored on disks [3, 4℄.Whenever there is a requirement for some kind of lo
ality in mesh indexings, spa
e-�lling 
urves, and, in parti
ular Hilbert indexings [2, 3, 4, 6, 7, 9, 10, 12, 13, 23, 25℄seem to 
ome into play.Gotsman and Lindenbaum [10℄ study 1 ! r lo
ality for the Eu
lidean metri
 thatplays an important role in �elds su
h as image pro
essing and 
omputer graphi
s. Theyprimarily 
onsider Hilbert's spa
e-�lling 
urve and provide upper and lower bounds.We improve their upper and lower bounds in the 2-D 
ase.The Manhattan metri
 is parti
ularly important in the �eld of parallel pro
ess-ing on mesh-
onne
ted pro
essor arrays. Here, good lo
ality of an indexing s
hemefor the pro
essors may lead to redu
ed 
ommuni
ation 
osts [6, 7, 15, 19, 25℄. (Thesame applies to the maximum metri
, whi
h is more suitable for grids with diago-nal 
onne
tions, 
f. e.g. [16, 17℄.) For the Manhattan metri
 and the �eld of parallelpro
essing, we delve into more detail about the history of results and appli
ations.Stout [27℄ seems to be the �rst who used so-
alled proximity orderings in the 
ontextof 2-D mesh algorithms. We 
all them Hilbert indexings due to the dire
t relation toHilbert's spa
e-�lling 
urve [11, 24℄. Subsequently, they have been used to speed upa wide variety of parallel algorithms: 
omputational geometry [19℄, fast ba
ktra
kingand bran
h-and-bound [15℄, mapping of pyramid networks [8℄, simulation of abstra
tparallel 
omputation models [7, 21℄, and parallel qui
ksort [25℄. Quantitative analysis
on
erning the properties of lo
ality-preserving indexing s
hemes have, so far, fo
usedmainly on the 2-D Hilbert-indexing. A

ording to Stout \there is a 
onstant 
 < 4su
h that pro
essors numbered i and j are no more than 
 �pji� jj 
ommuni
ationlinks apart" [27, page 27℄. This was then proved by Kaklamanis and Persiano [15℄for 
 = 4. Re
ently, a bound of 3 �pji� jj has been proved by Cho
hia, Cole, andHeywood [7℄. However, the proof is quite 
ompli
ated. We present a fairly simple and
omplete proof of this result and show that H-
urves, to be introdu
ed in the nextse
tion, are better than Hilbert 
urves with respe
t to lo
ality. Lately, Cho
hia andCole [6℄ attained results for 3-D Hilbert indexings. These are also 
omplemented byour results and more re
ent related work [2℄.Buhrman et al. explain how average 
ase lower bounds for the 1! r lo
ality 
an beobtained using a simple 
ounting argument and the 
on
ept of Kolmogorov 
omplexity[5℄. For the 2-D 
ase and the Eu
lidean metri
 they show that d2(i; j) �p0:636ji� jjfor any i and 
 (n2) 
hoi
es for j. Furthermore, d2(i; j) � p2:5ji� jj if i is mappedto a 
orner point.

4
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Figure 1: H-indexings are built using triangles as building blo
ks.4 The H-indexingGotsman and Lindenbaum [10, page 797℄ posed the question as to \whether there existfamilies of spa
e-�lling 
urves with lo
ality properties better than those of the Hilbert
urves for all sizes." One of the main 
ontributions of this paper is to answer thisquestion aÆrmatively. Our result not only applies to the Eu
lidean metri
 as studiedby Gotsman and Lindenbaum, but also to the Manhattan and the maximum metri
s.In this se
tion we introdu
e H-indexings and analyze their lo
ality properties showing,the 
laimed improvement 
ompared with Hilbert indexings. Se
tion 5 argues that H-indexings are optimally lo
ality-preserving among all dis
rete spa
e-�lling 
urves asthey provide tight lower bounds.4.1 Constru
tion s
hemeH-indexings are related to 2-D Sierpi�nski 
urves [24℄. As the name indi
ates, H-indexings have an \H-shaped" form. In analogy to Hilbert indexings, we obtain index-ings for 2k�2k-meshes1 by means of an indu
tive method. There is, however, a de
isivedi�eren
e. Whereas in the 
ase of Hilbert indexings the building blo
ks are four smallersquares (
f. Se
tion 6 and Figure 7 there), the 
onstru
tion of H-indexings is easier todes
ribe using right-angled triangles. For Hilbert indexings we only have one buildingblo
k to whi
h we apply rotation or re
e
tion. To build the �nal mesh indexing, weput together two triangles. Fig. 1 shows the 
onstru
tion of a triangle from 4 smallertriangles. A triangle with 8 mesh nodes is 
onstru
ted from triangles with only twonodes and a triangle with 32 nodes is 
onstru
ted from those with 8 nodes. Observethat the triangles are 
onstru
ted so that pre
isely every other mesh node along thediagonal belongs to the nodes of the triangle. Thus an indexing s
heme for a squaremesh 
an be obtained as shown in Fig. 2. Alternatively, Fig. 3 shows how for all k > 1an H-indexing through a square of size 4k is built from 4 H-indexings through squares1A Java program for the general 
ase of non-
ubi
 meshes with arbitrary side-lengths 
an be foundat http://www-fs.informatik.uni-tuebingen.de/~reinhard/h
urve.html.5
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Figure 2: Building an H-indexing for a square using two triangles.

Figure 3: Indu
tive 
onstru
tion prin
iple of H-indexings.of size 4k�1 ea
h. For subsequent proofs, however, it is more 
onvenient to make useof the 
onstru
tion prin
iple based on triangles.For 
omputer-assisted 
onstru
tion, we 
an des
ribe the H-indexing of a 2k � 2kmesh by expressing the 
oordinates x(i) and y(i) of the i-th point re
ursively in thefollowing way. Fig. 4 best demonstrates the subsequently given re
urren
es for x(i)and y(i). The re
urren
es relate dire
tly to the re
ursive 
onstru
tion prin
iple of H-
urves. Consider Fig. 4: The H-Curve starts in the lower left 
orner with index 0. Leth := 4k=32, where 4k is the total number of mesh points. The H-
urve �rst traverses the\triangle" (see Fig. 4) 
ontaining 0, then that 
ontaining h, then that 
ontaining 2h,then that 
ontaining 3h, until at g = 4h it enters the upper left quadrant. Fromthere it goes through f and then 2g and so on, always following some kind of trianglestru
ture. Most importantly, this triangle stru
ture a
ts re
ursively, thus leading tothe somewhat 
ompli
ated re
urren
e given below. Its 
orre
tness has been 
he
kedby 
omputer. Note that in Fig. 4, i and j are lo
ated at some spe
ial points, whi
h, aswill later be shown, form a \worst 
ase pair" of indi
es 
on
erning the lo
ality for theH-indexing.Observe that the subsequent parameter l is uniquely determined in ea
h re
ursive
6



Discrete Applied Mathematics, Vol. 117(1–3), pp. 211–237, 2002

2k
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>: 0

f

22k � 1

2g 4g
2h 7ggj 3g 5g

6g
h i 3h

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>; 2l
Figure 4: The positions of the points i and j for the worst 
ases. The re
ursion isshown for l = k � 1. Let g = 22l�1 and h = 22l�3.step by the if-
onditions of the various 
ases; l ranges from k � 1 to 1.x(i) = 8>>>>>><>>>>>>:

2k � 1� x(i� 22k�1) if i � 22k�1;2l + x(i� 3 � 22l�1) if 4 � 22l�1 > i � 3 � 22l�1;2l � 1� x(3 � 22l�1 � 1� i) if 3 � 22l�1 > i � 2 � 22l�1;x(22l � 1� i) if 2 � 22l�1 > i � 1 � 22l�1;0 if i � 1:y(i) = 8>>>>>><>>>>>>:
2k � 1� y(i� 22k�1) if i � 22k�1;2l + y(i� 3 � 22l�1) if 4 � 22l�1 > i � 3 � 22l�1;2l + y(3 � 22l�1 � 1� i) if 3 � 22l�1 > i � 2 � 22l�1;2l+1 � 1� y(22l � 1� i) if 2 � 22l�1 > i � 1 � 22l�1;i if i � 1:The following results for \worst 
ase distan
es" between points indexed by the H-
urve are to be 
ompared with the subsequent Theorem 1 presenting upper bounds forthe lo
ality of H-indexings. The Eu
lidean worst 
ase (
f. Fig. 4) for ea
h k are pairsof points i = 3 � 22k�5 � 1 and j = 22k�3 + 1 with ji� jj = 22k�5 + 2 andd2(i; j) = p(x(i)� x(j))2 + (y(i)� y(j))2= p(2k�2 � 1� 2k�1 + 2)2 + (2k�2 � 2k�1 � 1)2= p4(22k�5 + 2)� 8 + 2 =p4ji� jj � 6:7
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The same pairs are also responsible for the worst 
ase in the Manhattan metri
:d1(i; j) = jx(i)� x(j)j+ jy(i)� y(j)j= �2k�2 + 1 + 2k�1 � 2� 2k�2 + 2k�1 + 1 = 2k�1= p8 � 22k�5 =p8(ji� jj � 2):Thus, in both 
ases we observe the worst 
ases on a diagonal dire
tion (from i to j). Inthe maximum metri
, however, the worst 
ases are from 0 to f = 22k�2� 1 (see Fig. 4)with j0� f j = 22k�2 � 1 andd1(i; j) = 2k � 1 = 2pj0� f j+ 1� 1:4.2 Upper boundsIn this subse
tion, we give results for lo
ality properties of H-indexings with respe
t tothe Eu
lidean, the Manhattan, and the maximum metri
.Theorem 1. For two arbitrary indi
es i and j, i 6= j, on the H-indexing the followingis true:1. d1(i; j) �p8(ji� jj � 2) for ji� jj > 3,2. d2(i; j) �p4ji� jj � 2,3. d1(i; j) � 2pji� jj+ 1� 1.Observe that upper and lower bounds mat
h for the Manhattan metri
 and themaximum metri
. For the Eu
lidean metri
 we had a lower bound of p4ji� jj � 6whi
h is only O�1=pji� jj� away from the upper bound | less than an additive
onstant.Theorem 1 shows that H-indexings provide an improvement in lo
ality 
ompared toHilbert-
urves, answering an open question given by Gotsman and Lindenbaum [10℄.Fo
using their attention on the Eu
lidean metri
, they proved that for Hilbert 
urves Cwith respe
t to their lo
ality measure L1(C) := maxi;j2f1;::: ;n2g;i<j d2(i; j)2=ji�jj it holds6 � (1�O(2�k)) � L1(C) � 20=3, where n = 2k with k > 1. Our result implies that forH-indexings C we have L1(C) = 4. To present our result of Theorem 1, we preferredto make a more 
on
rete and more pre
ise statement (whi
h even in
ludes additive
onstants) than the \L1(C)-notation" allows.Both the maximum metri
 and the Manhattan metri
 are of spe
i�
 relevan
e inparallel pro
essing [7, 21, 25℄. Another advantage of H-indexings over Hilbert index-ings is that they do not just des
ribe a Hamiltonian path, but a Hamiltonian 
y
lethrough the mesh as well. This is useful, e.g., for parallel algorithms whi
h employ
ommuni
ation along a virtual ring network. Interestingly, H-indexings are optimally8
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00
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40Figure 5: Indexing nodes (f0; 1; 2; 3; 4; 5; 6; 7g) in a triangle of size 8 and their repre-sentatives (f00; 10; 20; 30; 40; 50; 60; 70g). Note that 10 and 30, 20 and 60, and 50 and 70 ea
hhave the same lo
ation.lo
ality-preserving among all Hamiltonian 
y
les through a square mesh, as the nextse
tion shows.As it turns out, proofs that give the above tight results in
luding additive 
onstantsare fairly te
hni
al [22℄ and have been omitted here. As shown below, however, slightlyweaker results regarding the additive 
onstants 
an be proved in an elegant way.Theorem 2. For two arbitrary indi
es i and j on the H-indexing the following is true:1. d1(i; j) �p8ji� jj+ 4,2. d2(i; j) � 2pji� jj+p10,3. d1(i; j) � 2pji� jj+ 3.Proof. We 
on
entrate on proving the result for the Eu
lidean metri
 d2(i; j). Thestatements for the Manhattan metri
 d1(i; j) and the maximum metri
 d1(i; j) theneasily follow by the general relationsd1(i; j) � p2 � d2(i; j)and d1(i; j) � d2(i; j):The proof for d2(i; j) works by indu
tion on the size of the smallest triangle (a
-
ording to the 
onstru
tion prin
iple of H-
urves) 
ontaining both i and j. Note thatall these triangles are right-angled and 
ontain 2l mesh points for l � 1. Hen
e theindu
tion operates on l. For l = 1 and l = 2 the 
laim 
an be trivially 
he
ked. Con-sider a triangle of size 8 (8-triangle for short), that is, l = 3, as drawn in Fig. 5. For9
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ea
h of the nodes in an 8-triangle we assign a representative whi
h is lo
ated on the
orners of the 4 subtriangles as drawn in Fig. 5. The two representatives of a 2-triangleare determined as follows: If possible, rotate the 2-triangle in so that it has the sameorientation (the verti
al 
athetus to the left, the horizontal 
athetus to the bottom)as the original 8-triangle. The two representatives are then (in the 
ase of Fig. 5) atthe endpoints of the verti
al 
athetus. Observe that in Fig. 5 the 2-triangle 
ontainingnodes 4 and 5 
annot be rotated in so that it has the same orientation as the 8-triangle.In this 
ase, we speak of the 
omplementary2 triangle and here the endpoints lie on thehorizontal 
athetus. Note that ea
h right-angled triangle 
an be brought (by rotation)in one of the orientations \one 
athetus as bottom line and one 
athetus either to theleft or to the right as verti
al line."Let i and j be two arbitrary nodes and let l > 2. Let i0 and j 0 be the representativesof i and j, respe
tively, whi
h are obtained by applying the above rules to the 8-triangles
ontaining i and j.We show by indu
tion on l thatd2(i0; j 0) � 2pji0 � j 0j: (1)Observe that the numeri
al values of i and i0, j and j 0, respe
tively, are the same,only their geometri
 positions di�er a little. We introdu
e spe
i�
ally the 
onventionthat a \2l-triangle" may 
ontain 2l + 1 representatives, where the 2l + 1st is alsothe �rst node of the subsequent triangle. This assumption is solely due to te
hni
alreasons. Our 
laim 
an be dedu
ed from Equation (1), be
ause the Eu
lidean distan
ebetween an index i and its representative i0 (for example, 2 and 20) may be at mostp(1=2)2 + (3=2)2 = p10=2. Hen
e, d2(i; j) � d2(i0; j 0)+p10, in the Manhattan 
ase wehave d1(i; j) � d1(i0; j 0)+4, and in the maximum 
ase we have d1(i; j) � d1(i0; j 0)+3.It remains to prove Inequality (1) by indu
tion on l. The 
laim for l = 1 and l = 2
an be easily 
he
ked (
f. Fig. 5). Now let i0 and j 0 be in two di�erent halves of their(smallest) \surrounding" triangle (otherwise the indu
tion hypothesis applies). Due toour de�nition of representatives we 
an assume (up to rotation) a situation as drawnin Fig. 6. In Fig. 6, the point p lo
ated at the right angle always represents a point inthe indexing and the angle between i0, p, and j 0 is at most 90o. Thus the Eu
lideandistan
e between i0 and j 0 
an be bounded from above using Pythagoras' theorem andthe indu
tion hypothesis: d2(i0; j 0) � qd22(i0; p) + d22(p; j 0)� p4ji0 � pj+ 4jp� j 0j= 2pji0 � j 0j:This veri�es Inequality (1) and the proof is 
ompleted.2The triangle mirrored at the verti
al axis. 10
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p
i0 j 0

Figure 6: Two representatives in the two halves of the smallest triangle 
ontainingboth of them.In the next se
tion, we show that H-indexings are quite 
lose to optimal lo
alitymesh-indexings.5 Lower boundsThis se
tion indi
ates that H-indexings might be optimal in lo
ality-preservation amongall indexings of 2-D meshes. We 
onje
ture that they are optimal for the Eu
lidean,the maximum, and the Manhattan metri
. Due to the fa
t that the diÆ
ulty for ageneral proof lies in \
oming to grips with the loose ends," we support this 
onje
tureby showing the optimality among the 
y
li
 indexings.The idea at the 
ore of the lower bound proofs in this se
tion is des
ribed in thefollowing. As a rule, we pi
k a small number of points in the mesh. Every meshindexing has to traverse these points in some spe
i�
 order. Considering all possibleorders and having pi
ked out these mesh points 
arefully, we 
an fo
us on the argumentthat no matter what the indexing is, two of the indi
es pi
ked, i and j, must have meshdistan
e d(i; j) � 
pji� jj � d for 
onstants 
 and d. In the subsequent proofs, wegive values for 
 and d and prove their 
orre
tness by 
ontradi
tion. The values for
 and d were found by analyzing some 
on
rete examples and deriving from these
onje
tures 
on
erning 
 and d, whi
h are proved here. Generally, these lower boundproofs are based on 
ase distin
tions with respe
t to the order in whi
h the sele
tedmesh points are traversed by the indexing. The heart of all proofs is the well thoughtout sele
tion of the appropriate mesh points. These points 
an be 
onsidered a \worst
ase 
on�guration" valid for all mesh indexings, yielding our lower bounds.
11
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5.1 Eu
lidean and maximum metri
Theorem 1 of Gotsman and Lindenbaum [10℄ says that for any dis
rete 2-D spa
e-�lling
urve on an n � n-mesh, d2(i; j) > p3(1� 1=n)2ji� jj. They also report that by a
omputerized exhaustive sear
h they have improved the 
onstant fa
tor 3 to 3.25. Weimprove this to 3.5 by a dire
t proof. In addition, their result is only valid for 
ontinuousindexings, whereas ours poses no restri
tions on the indexing. We 
onje
ture that this
an be raised to 4, implying the optimality of H-
urves among all mesh-indexings (
f.Theorem 1 and Theorem 2).In the following theorem we make use of the general relationship d1(i; j) � d2(i; j)by proving only the result for the maximum metri
.Theorem 3. For ea
h indexing of an n�n-mesh, n � 2, there must be indi
es i and jwith d2(i; j); d1(i; j) > n=4 su
h that d2(i; j); d1(i; j) �p3:5ji� jj � 1.Proof. Due to d2(i; j) � d1(i; j) it suÆ
es to restri
t our attention to the maxi-mum metri
. The proof is by 
ontradi
tion. Assume on the 
ontrary that for all iand j with d1(i; j) > n=4 we have d1(i; j) < p3:5ji� jj � 1, that means ji � jj >(d1(i; j) + 1)2=3:5. In the following, we des
ribe something like a \worst 
ase 
on�g-uration" of some index lo
ations in the mesh. We 
onsider the two 
ases representedby the two basi
 pi
tures below. All other 
ases are symmetri
. Let i1 < i2 < i3 andi2 < i4 be the indi
es of the 4 
orner points of the n � n-mesh. Sin
e we leave therelation between i3 and i4 open, the following des
ribes (ex
ept for symmetri
 
ases)all possibilities (
f. [10℄). Note that the right-hand pi
ture is ne
essary for the 
ase ofnon-
ontinuous indexings.

i1i2 i4i3i0 i5 i1i3 i4i2i0 i5Let i0 be the rightmost point in the row between i1 and i4 with i0 < i2. Note thati0 = i1 is possible. The distan
e of i0 from i1 shall be m � 1. Therefore, the neigh-boring point i5 of i0 with i2 < i5 has distan
e n � m � 1 from i4. Generally, wehave two possible orders of i0 and i1 and six possible orders of i3, i4 and i5. Thus,�rst assuming n=4 < m < 3n=4 in order to make subsequent use of our assumptionji � jj > ((d2(i; j) + 1)2)=3:5, we derive the relationship shown below. Observe thatthe following is valid for both pi
tures above at the same time.
12



Discrete Applied Mathematics, Vol. 117(1–3), pp. 211–237, 2002n2 � minfji0 � i1j+ ji1 � i2j; ji1 � i0j+ ji0 � i2jg+minfji2 � i3j+ ji3 � i4j+ ji4 � i5j; ji2 � i3j+ ji3 � i5j+ ji5 � i4j;ji2 � i5j+ ji5 � i4j+ ji4 � i3j; ji2 � i5j+ ji5 � i3j+ ji3 � i4j;ji2 � i4j+ ji4 � i3j+ ji3 � i5j; ji2 � i4j+ ji4 � i5j+ ji3 � i3jg> 13:5 minf(d1(i0; i1) + 1)2 + (d1(i1; i2) + 1)2; (d1(i1; i0) + 1)2 + (d1(i0; i2) + 1)2g+ 13:5 minf(d1(i2; i3) + 1)2 + (d1(i3; i4) + 1)2 + (d1(i4; i5) + 1)2;(d1(i2; i3) + 1)2 + (d1(i3; i5) + 1)2 + (d1(i5; i4) + 1)2;(d1(i2; i5) + 1)2 + (d1(i5; i4) + 1)2 + (d1(i4; i3) + 1)2;(d1(i2; i5) + 1)2 + (d1(i5; i3) + 1)2 + (d1(i3; i4) + 1)2;(d1(i2; i4) + 1)2 + (d1(i4; i3) + 1)2 + (d1(i3; i5) + 1)2;(d1(i2; i4) + 1)2 + (d1(i4; i5) + 1)2 + (d1(i5; i3) + 1)2g= 13:5((m2 + n2)+minf2n2 + (n�m)2; 2n2 + (n�m)2; n2 + (n�m)2 + n2;3n2; 3n2; n2 + (n�m)2 + n2g)= m2 + 3n2 + (n�m)23:5 = 2m2 + 4n2 � 2nm3:5 = 3:5n2 + 2(n=2�m)23:5This is a 
ontradi
tion.Now, turning to the 
ase m � n=4, we do not use i0 as a 
andidate point and asimilar 
al
ulation as above yields:n2 � 3n2 + (n�m)23:5 � 3n2 + (3n=4)23:5 = 3:5625n23:5 ;a 
ontradi
tion. Analogously, if m � 3n=4, by eliminating i5 we getn2 � m2 + 3n23:5 � 3n2 + (3n=4)23:5 = 3:5625n23:5 :Compared to Theorem 3, the lower bound for the spe
ial 
ase of 
y
li
 indexings
an be obtained 
omparatively easily. Together with Theorem 1 it shows optimality ofH-indexings among all 
y
li
 indexings up to small additive 
onstants.Theorem 4. For ea
h 
y
li
 indexing of an n�n-mesh, n � 2, indi
es i and j must bepresent, so that d2(i; j); d1(i; j) � 2pji� jj � 1. This lower bound spe
i�
ally appliesto the two 
orners i and j of the mesh.Proof. Let i1, i2, i3, and i4 be the 4 
orner points of an n � n-mesh. Be
ause theindexing is 
y
li
 (and thus also 
ontinuous, 
f. Se
tion 2) there must be two 
ornerpoints ij and ik with j; k 2 f 1; 2; 3; 4 g and j 6= k su
h that jij � ikj � n2=4. On theother hand, d2(ij; ik) � d1(ij; ik) � n� 1 � 2pjij � ikj � 1.13
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5.2 Manhattan metri
Whereas in the 
ase of the Eu
lidean and the maximummetri
 we 
ould give quite 
losebounds for the \general 
ase," this seems to be more problemati
 when dealing withthe Manhattan metri
. In the general 
ase, we obtain the following, 
omparativelyweaker result, based on a more 
ompli
ated 
ase distin
tion 
on
erning \worst 
ase
on�gurations" of some index lo
ations (as shown by the subsequent pi
tures).Theorem 5. For ea
h indexing of an n � n-mesh, n � 2, indi
es i and j must bepresent with d1(i; j) > 2n=5, so that d1(i; j) �p6:5ji� jj � 2.Proof. Assume the 
ontrary that for all i and j with d1(i; j) > 2n=5 we have d1(i; j) <p6:5ji� jj � 2, making ji � jj > (d1(i; j) + 2)2=6:5. We des
ribe the \worst 
ase
on�gurations" needed for proving our result by the following four pi
tures. Let i1 <i2 < i5 < i6 be the indi
es of the 4 
orner points of the n�n-mesh the indexing passesthrough in the given order. Then (ex
ept for symmetri
 
ases) we have the followingfour possibilities. Observe that the �rst pi
ture 
omes into play be
ause we also allownon-
ontinuous indexings.1. i1i5 i6i2 2. i1i2 i5i6i0 i4i3 i7 3. i1i2 i6i5i0i4 i3i7 4. i1i2 i6i5i0 i7In the se
ond to fourth pi
ture, i0 is the rightmost point in the row 
ontaining i1 withi0 < i2 and distan
e m�1 from i1, and i7 is the leftmost point in the row 
ontaining i6with i5 < i7 and distan
e l � 1 from i6. Moreover, i3 and i4 are immediate lefthandand righthand neighbors of i7 and i0, respe
tively.1. The 
ase exhibited with the �rst pi
ture is fairly easy to handle. Needing nofurther assumptions, we haven2 � ji1 � i6j = ji1 � i2j+ ji2 � i5j+ ji5 � i6j> (d1(i1; i2) + 2)2 + (d1(i2; i5) + 2)2 + (d1(i5; i6) + 2)26:5� 4n2 + n2 + 4n26:5 = 9n26:5 ;a 
ontradi
tion.

14
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2. In the 
ase referring to the se
ond pi
ture, if i4 < i3, then we haven2 � ji0 � i7j = ji0 � i2j+ ji2 � i4j+ ji4 � i3j+ ji3 � i5j+ ji5 � i7j> (d1(i0; i2) + 2)2 + (d1(i2; i4) + 2)2 + (d1(i4; i3) + 2)26:5+(d1(i3; i5) + 2)2 + (d1(i5; i7) + 2)26:5� (n+m)2 + (n+m)2 + (2n�m� l)2 + (n+ l)2 + (n+ l)26:5= 8n2 + 3m2 + 2ml + 3l26:5 � 8n26:5 :If m + l � n=2 thenn2 � ji0 � i7j = ji0 � i2j+ ji2 � i5j+ ji5 � i7j> (n +m)2 + 4n2 + (n+ l)26:5 = 6n2 + 2(m+ l)n+m2 + l26:5 � 7n26:5 ;otherwise (i.e., m + l < n=2 and i3 < i4) we have to distinguish between threesub-
ases. First assume that i3 < i1. Thenn2 � ji3 � i5j = ji3 � i1j+ ji1 � i2j+ ji2 � i5j> (2n� l)2 + n2 + (2n)26:5 = 9n2 � 4ln+ l26:5 � 7n26:5 :If i4 > i6, we get the same for reasons of symmetry.Finally, if i1 < i3 and i4 < i6, thenn2 � ji1 � i6j = ji1 � i3j+ ji3 � i4j+ ji4 � i6j> (2n� l)2 + n2 + (2n�m)26:5 � 9n2 � 4(m+ l)n6:5 � 7n26:5 :3. With respe
t to the third pi
ture, we haven2 � ji0 � i7j = ji0 � i2j+ ji2 � i4j+ ji4 � i5j+ ji5 � i7j> (n+m)2 + (n+m)2 + (2n�m)2 + (n+ l)26:5� 7n2 + 3m2 + 2nl + l26:5 � 7n26:5 :4. The last pi
ture di�ers from the third 
ase in that i0 and i7 are now immedi-ate neighbors. In addition, for reasons of symmetry we assume without loss ofgenerality that m � n=2 (otherwise, the roles of i0 and i7 will inter
hange). Ifm � 0:418n, then n2 � ji1 � i7j = ji1 � i5j+ ji5 � i7j> (2n)2 + (1:582n)26:5 = (4 + 2:502)n26:5 :15
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If i0 < i1, thenn2 � ji0 � i7j = ji0 � i1j+ ji1 � i5j+ ji5 � i7j> m2 + (2n)2 + (2n�m)26:5 = 8n2 + 2m2 � 4nm6:5= 6:5n2 + (n� 2m)2=2 + (n� 2m)n6:5 � 6:5n26:5 :If i7 < i6 thenn2 � ji1 � i6j = ji1 � i5j+ ji5 � i7j+ ji7 � i6j> (2n)2 + (1:5n)2 + (0:5n)26:5 = (4 + 2:25 + 0:25)n26:5 :Otherwise we have 0:418n < m � n=2, i1 < i0, and i6 < i7. Thenn2 � ji1 � i7j = ji1 � i0j+ ji0 � i2j+ ji2 � i6j+ ji6 � i7j> m2 + (n+m)2 + (2n)2 + (n�m)26:5 = 6n2 + 3m26:5 > 6:5n26:5 ;again a 
ontradi
tion.This 
ompletes the proof.In the spe
ial 
y
li
 
ase, however, we 
an again prove (asymptoti
) optimality ofH-
urves due to the following theorem.Theorem 6. For ea
h 
y
li
 indexing of an n� n-mesh, n � 2, indi
es i and j mustbe present, so that d1(i; j) � p8ji� jj � 2. This lower bound spe
i�
ally applies if iand j are in two diagonally opposite 
orners of the mesh.Proof. By de�nition of a 
y
li
 indexing, ji � jj � n2=2 for all i and j in an n � nsquare. Consequently, we have for two diagonally opposite 
orners i and j, d1(i; j) =2n� 2 � 2p2ji� jj � 2 =p8ji� jj � 2.6 Me
hanizing proofs for upper boundsThe primary goal of this se
tion is to introdu
e a te
hnique, whereby it is possibleto derive lo
ality properties of self-similar indexings by me
hani
al inspe
tion. InSe
tion 6.1, we start with the well know 2-D Hilbert indexing and give a more 
ompleteproof of the tight bound for the Manhattan distan
e already found in [7℄, whi
h does notneed tedious manual 
ase distin
tions. Then, in Se
tion 6.2 we develop a more widelyappli
able te
hnique and apply it to other metri
s and to 3-D Hilbert indexings.

16
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yFigure 7: Hilbert indexings of size 4 and 16 and the general 
onstru
tion prin
iple.6.1 The Hilbert indexingFig. 7-(a) shows the two smallest Hilbert indexings for meshes of size 4 and 16.Fig. 7-(b) shows the general 
onstru
tion prin
iple. For any k � 1, four Hilbert index-ings of size 4k are 
ombined into an indexing of size 4k+1 by rotating and re
e
ting themin su
h a way that 
on
atenating the indexings yields a Hamiltonian path through themesh. Note that the left and the right side of the 
urve are symmetri
al to ea
h other.Consequently, we need only keep tra
k of the orientation of the edge whi
h 
ontainsthe start and end of the 
urve (drawn with bold lines here).3 We start with a lowerbound for the lo
ality:Theorem 7. For every k � 1, indi
es i and j are present on the Hilbert indexing, sothat ji � jj = 4k�1 and the Manhattan-distan
e of i and j is exa
tly 3pji� jj � 2 =3 � 2k�1 � 2.Proof. Consider Fig. 8. It shows parts of the Hilbert indexing (rotated 90 degrees to theright 
ompared to Fig. 7). It suÆ
es to show that the indi
es i and j in the lower left andupper right 
orner of the shaded area of Fig. 8 have Manhattan-distan
e 3pji� jj�2.We must 
ompute the size of the shaded area whi
h denotes all nodes on the Hilbertindexing lying between i and j. We always draw the largest subsquare �lled by theHilbert indexing on the path from i to j. In this sense, the dotted line represents thepath of the Hilbert indexing respe
tive of the sizes of the largest subsquares it passesthrough. Ex
ept for the lower left 
orner and upper right 
orner we have exa
tly threesubsquares of size 2l � 2l within the shaded area for ea
h 0 � l < k � 1. As theshaded area of the left half 
an be mapped onto the unshaded area in the right halfof Fig. 8 (ex
ept for one mesh node remaining), we get ji � jj = 4k�1. Computing3pji� jj � 2 = 3 � 2k�1 � 2, we obtain the Manhattan-distan
e of i and j exa
tly,where the latter 
an easily be read from Fig. 8.3We note without proof that the above rule uniquely de�nes the Hilbert indexing up to globalrotation and re
e
tion. In a sense, the Hilbert 
urve is the \simplest" self-similar, re
ursive, lo
ality-preserving indexing s
heme for square meshes of size 2k � 2k. More details 
an be found in [2℄.17
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i 2k�1 2k

j

Figure 8: Worst-
ase for the Manhattan-distan
e between two indi
es i and j.Before we 
ome to the mat
hing upper bound, we need a te
hni
al lemma thatshows how we 
an bound maxji�jj=m d(i; j) for a �xed m by inspe
ting a �nite numberof segments. These are those segments of length m whi
h either lie within a singleindexing of size 4dlog4 me or within two su
h sub-grids. For the latter 
ase there are foursub
ases for the four di�erent relative orientations of two subgrids shown in Fig. 9.This method works for an arbitrary norm k�k.Lemma 8. Let x(i) and y(i) denote the x-
oordinate and y-
oordinate of the ith pointin the Hilbert indexing. Letdint(m) := max�d(i; j) : ji� jj = m ^ 0 � i < j < 4dlog4me	 anddext(m) := maxi0+j0=m�1max k(jx(j0)�y(i0)j;1+y(j0)+x(i0))kk(jx(j0)�x(i0)j;1+y(j0)+y(i0))kk(1+x(j0)+y(i0);jy(j0)�x(i0)j)kk(1+x(j0)+x(i0);jy(j0)�y(i0)j)k! :Then 8i; j : d(i; j) � max(dint(ji� jj); dext(ji� jj)).Proof. Consider any segment size m and any indi
es i and j with ji� jj = m. W.l.o.g.assume j > i and let k = dlog4me.(1) Case 8l 2 fi+ 1; : : : ; jg : l 6� 0 mod 4k: Due to the self-similarity of the Hilbertindexing, the segment (i; j) is isomorphi
 to the segment (i mod 4k; j mod 4k). Thissegment has already been 
he
ked by 
omputing dint(m).(2) All other 
ases: There is exa
tly one l with i < l � j and l � 0 mod 4k. Dueto the self-similarity and symmetry of the Hilbert-indexing, the segments (l; j) and(i; l � 1) are isomorphi
 to the segments (0; i0) and (0; j 0) respe
tively where j 0 = j � land i0 = l � i � 1. There are only four di�erent ways (disregarding rotation andre
e
tion) the segments (l; j) and (i; l � 1) 
an be oriented toward ea
h other. Fig. 918
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Figure 9: Possible relative orientations of two Hilbert-squares, where i0 
orresponds tothe term l � i� 1 in the proof of Lemma 8 and j 0 
orresponds to j � l.shows the ways in whi
h this is possible. For ea
h of these four 
ases, a formulades
ribing the distan
e ve
tor between the points i and j 
an be derived as follows:In one dire
tion, the distan
e between the two points is one (the distan
e betweenthe two subsquares) plus the sum of two 
oordinates from points i0 and j 0 (using thestandard orientation of the Hilbert-indexing). In the other dire
tion, the distan
e is thedi�eren
e between the other two 
oordinates of i0 and j 0. For example, if the subsquaresare arranged as in the leftmost part of Fig. 9, we have to add one, y(j 0), and x(i0) inorder to get the distan
e in the x-dire
tion while the distan
e in the y-dire
tion isjx(j 0)� y(i0)j. The inner maximization for the de�nition of dext 
he
ks the norms ofthe four possible distan
e ve
tors. The outer maximization 
overs all possible valuesfor l.This result will later be used in its full generality. It should be emphasized herethat Lemma 8 
an be veri�ed me
hani
ally by a simple 
omputer program. For now,we 
on
entrate on the Manhattan metri
:Theorem 9. For the Manhattan-distan
e of two arbitrary indi
es i and j on the Hilbertindexing with i 6= j, we have d1(i; j) � 3pji� jj � 2.Proof. The fundamental goal here is to exploit the self-similarity of the Hilbert indexingfor an indu
tive proof over ji� jj. In prin
iple, the proof is quite simple. However, itproves to be the 
ase that a spe
ial treatment is ne
essary for \small" meshes and forindi
es i and j whi
h are 
lose to the worst 
ase des
ribed in Theorem 7.(1) Case ji� jj < 16: Apply Lemma 8 for ji� jj 2 f1; : : : ; 15g.(2) Case ji � jj � 16: By indu
tion over ji � jj we prove the following strongerstatement: d1(i; j) � 3pji� jj � 2:5 or i and j are arranged as in Theorem 7 (Fig. 8)19
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and d1(i; j) = 3pji� jj � 2.(2.1) Basis of indu
tion, 16 � ji � jj � 80: Apply Lemma 8 for ji� jj 2f16; : : : ; 80g. Note that this 
an be done me
hani
ally by a simple 
omputer program.(2.2) Indu
tive step for ji� jj > 80: We look at the \
oarsened" indexing de�nedby 
onsidering ea
h 2�2 subsquare starting at even 
oordinates as a single mesh node.Due to the self-similarity of the Hilbert indexing, the 
oarsened indexing is itself aHilbert indexing.De�ne a 2 N , b 2 f0; 1; 2; 3g, 
 2 N and d 2 f0; 1; 2; 3g, so that i = 4a + b andj = 4
+ d. In the 
oarsened indexing, the positions of i and j are a and 
 respe
tively.Sin
e ja � 
j � 16, we 
an apply the indu
tion hypothesis. Furthermore, d1(i; j) �2 � d1(a; 
) + 2 be
ause for ea
h of the four mesh-positions in subsquare a there is a
orresponding mesh-position in subsquare 
 whi
h is 2 � d1(a; 
) steps away; at worstj 
an be another two steps away from the mesh-position 
orresponding to i. We nowdistinguish two 
ases regarding the relative positions of a and 
.(2.2.1) a and 
 are not arranged as in Theorem 7: By the indu
tion hypothesiswe have d1(a; 
) � 3pja� 
j � 2:5 and therefored1(i; j) � 2(3pja� 
j � 2:5) + 2 = 6pja� 
j � 3 :Substituting a = i�b4 and 
 = j�d4 we getja� 
j = j(i� b)� (j � d)j4 � ji� jj+ jd� bj4 � ji� jj+ 34and therefore d1(i; j) � 3pji� jj+ 3�3. A simple 
al
ulation shows that 3pji� jj+ 3 �3pji� jj+ 0:5 for ji� jj � 80 and therefore d1(i; j) � 3pji� jj � 2:5.(2.2.2) a and 
 are arranged as in Theorem 7: With the ex
eption of symmetri
al
ases the 2�2-subsquares for i and j are numbered � 0 31 2 � and � 0 13 2 � and the subsquarefor j is above and to the right of the subsquare for i (refer to Fig. 8). There are twosub
ases:(2.2.2.a) b = d = 1: i and j are also arranged as in Theorem 7 and we getd1(i; j) = 2(3pja� 
j � 2) + 2 = 3r4j i� 14 � j � 14 j � 2 = 3pji� jj � 2as desired.(2.2.2.b) Else: We 
an use the estimate d1(i; j) � 2d1(a; 
) + 1 be
ause the worst
ase, in whi
h d1(i; j) = 2d1(a; 
) + 2, has already o

urred in the 
ase b = d = 1. A
al
ulation similar to the previous shows thatd1(i; j) � 2(3pja� 
j � 2) + 1 = 6pja� 
j � 3 � 3pji� jj � 2:5 :20



Discrete Applied Mathematics, Vol. 117(1–3), pp. 211–237, 2002
6.2 A generalized te
hnique and its appli
ationsThere are few instan
es where the proof of Theorem 9 makes expli
it use of the prop-erties of the Hilbert indexing or the Manhattan metri
. We now o�er a generalizedte
hnique whi
h 
an be applied to a wide spe
trum of self-similar indexings in r-dimensional meshes made up of building blo
ks of size q1, : : : , qr and a norm k�k.However, for simpli
ity we restri
t the presentation to 
ubi
 building blo
ks with side-length q and only show how slightly looser upper bounds than those of Theorem 9 
anbe proved. The latter relaxation allows us to avoid the spe
ial treatment of the worst
ase segments whi
h is ne
essary in the proof of Theorem 9.Theorem 10. Given any indexing s
heme for r-dimensional meshes with the propertythat 
ombining ea
h elementary 
ube of size qr from a mesh of size qkr into a singlemeta-node yields the indexing for a mesh of size q(k�1)r:If 8q(k�1)r � ji� jj � qkr : d(i; j) � �( rpji� jj � Æ)� �where � := k(1; : : : ; 1)k and Æ � rpqkr + qr � 1� qkq � 1then 8ji� jj � q(k�1)r : d(i; j) � �( rpji� jj � Æ)� �.The proof of Theorem 10 is quite analogous to the Proof of Theorem 9:Proof. By indu
tion over ji � jj. Let a = bi=qr
, b = i mod qr, 
 = bj=qr
, andd = j mod qr. Due to the self-similarity of the indexing s
heme, we 
an apply theindu
tion hypothesis to a and 
 if ji� jj � qkr. We �nd d(i; j) � q � d(a; 
) + �(q � 1)be
ause for ea
h of the qr mesh-positions in sub
ube a there is a 
orresponding mesh-position in sub
ube 
 whi
h is q � d(a; 
) steps away; at worst j 
an be another �(q� 1)steps away from the mesh-position 
orresponding to i (the diameter of a 
ube of sidelength q). Using the indu
tion hypothesis, we have d(a; 
) � �( rpja� 
j � Æ)� � andtherefored(i; j) � q(�( rpja� 
j � Æ)� �) + �(q � 1) = q � �( rpja� 
j � Æ)� � :Substituting a = i�bqr and 
 = j�dqr we getja� 
j = j(i� b)� (j � d)jqr � ji� jj+ jd� bjqr � ji� jj+ qr � 1qrand therefore d(i; j) � �( rpji� jj+ qr � 1� qÆ)� �. A simple 
al
ulation shows thatrpji� jj+ qr � 1� qÆ � rpji� jj � Æ for ji� jj � qkr and Æ � rpqkr+qr�1�qkq�1 .Theorem 10 
an be applied so that it yields upper bounds for d(i; j). However, theadditive 
onstant Æ and|ex
ept for the Manhattan metri
|the additive 
onstant � areartifa
ts of the indu
tive proof. If we do not want to make 
ase distin
tions involvingspe
ial properties of worst 
ase segments as in the proof of Theorem 9, we have to a

ept21
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Figure 10: Relative 
ube orientations to be 
he
ked for bounding maximum distan
esfor a given segment size.a small in
rease in the multipli
ative fa
tor � whi
h 
ompensates for the additive
onstants if ji � jj is large. The 
ase of small ji � jj 
an be resolved me
hani
ally.Consider the following pro
edure for obtaining bounds of the form d(i; j) � � rpji� jj+
 where 
 is some 
onstant to be determined.� Determine q and r from the de�nition of the indexing.� Fix a value k for the mesh size to be inspe
ted.� Set Æ = rpqkr + qr � 1� qkq � 1 and � := k(1; : : : ; 1)k.� Make use of the self-similarity of the indexing to �nd an analog to Lemma 8whi
h makes it possible to bound d(i; j) for indi
es with ji� jj = m using someme
hanizable method.� Find a 
onstant �, so that d(i; j) � �( rpji� jj� Æ)�� for q(k�1)r � ji� jj � qkrwhere Æ and � are de�ned as in Theorem 10. Applying Theorem 10 we 
aninfer that the same is true for ji � jj � qkr, i.e. 8ji � jj � q(k�1)r : d(i; j) ��( rpji� jj � Æ)� � � � rpji� jj � �.� Find a 
onstant 
 � �� su
h that d(i; j) � � rpji� jj+ 
 for ji� jj � q(k�1)r.� We 
an now 
on
lude from the two points above that for all i, j, d(i; j) �� rpji� jj+ 
.In the following, we will simply use 
 = 0 (whi
h will always suÆ
e) in order to indi
atethat the additive 
onstants are not tight. Also, we will only 
ite the tightest 
onstantfa
tor for an upper bound as given by our method without repeating the point that the
onstru
tive nature of the method also yields a lower bound with a 
lose-by 
onstantfa
tor. 22
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2-D Hilbert indexingsUsing the above method and by applying a small 
omputer program4 to the 
ase k = 8,we 
an infer a bound for the Eu
lid metri
 of d2(i; j) � p6 + 0:01pji� jj, whi
h is very
lose to the lower bound of p6ji� jj � 2� 1 a

ording to Gotsman and Lindenbaum[10℄. A signi�
ant improvement of the upper bound d2(i; j) � q6 + 23pji� jj isderived in the same paper.Trivially, the same bound also applies to the maximum metri
 for whi
h Gotsmanand Lindenbaum reported the same 
onstant fa
tors of p6 and q6 + 23 for lower andupper bounds respe
tively.Symmetri
 3-D Hilbert indexings

(b)(a) (c)Figure 11: Rule for building 3-D Hilbert indexings of order k from indexings of orderk � 1. The bottom front edge of the new 
ube is distinguished by the fa
t that theindexing starts and ends there. The 
orresponding edges of the 
omponent 
ubes aredrawn with thi
k lines. The order k � 1 
ubes have to be rotated a

ordingly.We have also applied the above te
hnique to the three variants of a 3-D Hilbert indexingshown in Fig. 11. Up to rotation and re
e
tions, these are the only variants whi
h aresymmetri
al with respe
t to an axis. The maximum segment distan
es 
an be 
he
kedin a 
omplete analogy of Lemma 8: Now nine relative orientations are to be 
he
ked.5Applying the \method" for variants (b) and (
) with k = 5 yields d1(i; j) �4:820661 3pji� jj and the systemati
 sear
h dis
overs indi
es with d1(i; j) �4:820248 3pji� jj. Variant (a) has a slightly better lo
ality: d1(i; j) � 4:6161 3pji� jj�3 for large ji � jj, whi
h also applies for small ji � jj using a slightly looser additive
onstant. In 
omparison, the best previous bound has the 
onstant fa
tor 8= 3p4 � 5:04[6℄.4Available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/eu
lid2.
.5A C-program doing the ne
essary 
he
ks is available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/
he
k3d.
. 23
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Variant (a) is also slightly superior using the Eu
lidean metri
, where we getd2(i; j) � 3:212991 3pji� jj for variant (a) and d2(i; j) � 3:245222 3pji� jj for variants(b) and (
) when we apply a simple program6 for k = 4. As opposed to the 2-D 
ase,the maximum metri
 allows smaller bounds than the Eu
lidean metri
 in the 3-D 
ase.We get d1(i; j) � 3:076598 3pji� jj for variant (a) and d1(i; j) � 3:104403 3pji� jjfor variants (b) and (
).7The method 
ould also be applied to the asymmetri
al variants of the Hilbertindexing des
ribed in [6℄. We only have to 
hange the pro
edure for 
he
king maximumsegment sizes in order to take segments starting at both ends of a 
ube indexing intoa

ount. Even generalizations to more 
ompli
ated s
hemes, like the H� indexingdes
ribed in [6℄, seem possible. (This s
heme appears to have a better lo
ality thansimple Hilbert indexings.) H� uses two non-isomorphi
 building blo
ks to de�ne largerindexings. But it still has the 
ru
ial property that the repla
ement of a 2�2�2 
ubewith a unit 
ube yields an instan
e of the indexing.7 Con
lusionLo
ality-preserving indexing s
hemes are in
reasingly be
oming a standard te
hniqueby whi
h to devise simple and eÆ
ient algorithms for mesh-
onne
ted 
omputers, pro-
essing geometri
 data, image pro
essing, data stru
tures, and several other �elds. Themethods developed here help to use the term \lo
ality-preserving" in an a

urate quan-titative sense. This makes it possible to show that for the most important 2-D 
ase,the newly presented H-indexing is superior with respe
t to lo
ality 
ompared with thepreviously used Hilbert indexing. We 
onje
ture that H-indexings are a
tually opti-mal among all possible indexing s
hemes, although we 
ould only prove this for 
y
li
indexings thus far. This applies to the Eu
lidean as well as the maximum and theManhattan metri
s.Our te
hniques for me
hani
ally deriving upper bounds make it possible to qui
klygain insight into the lo
ality properties of indexing s
hemes. In parti
ular, it waspossible to give new, almost tight bounds for the 2-D Hilbert indexing with respe
t tothe Eu
lidean metri
 and the maximum metri
 and also for the symmetri
 3-D Hilbertindexings. In the following table we summarize our lo
ality bounds for 2-D indexingsand also in
lude the results from [18℄ for Peano indexings, where it is remarkablethat a variant of the Peano indexing yields better results than the Hilbert indexing inmaximum metri
:6Available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/eu
lid3d.
.7The program is available under http://www.mpi-sb.mpg.de/~sanders/programs/hilbert/max3d.
.
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d(i; j) (2-D) Eu
lidean maximum ManhattanGeneral lower bound p3:5ji� jj � 1 p3:5ji� jj � 1 p6:5ji� jj � 2Cy
li
 lower bound p4ji� jj � 1 p4ji� jj � 1 p8ji� jj � 2Upper bd. H-
urve p4ji� jj � 2 p4ji� jj+ 4� 1 p8(ji� jj � 2)Upper bd. 2-D Hilbert p6:01ji� jj p6:01ji� jj p9ji� jj � 2Upper bd. Peano-
urve p8ji� jj p8ji� jj p(10:66ji� jj)Upper bd. Peano-
urve2 p6:25ji� jj p5:625ji� jj p(10ji� jj)With the advent of 3-D mesh-
onne
ted 
omputers, su
h as the Cray T3E, thein
reasing interest in pro
essing 3-D geometri
al data and the growing importan
e ofmultidimensional data stru
tures means that lo
ality-preserving 3-D mesh indexingswill be
ome more important.8 The following table summarizes lo
ality bounds for 3-D indexings. The rather te
hni
al proofs of these results are 
ontained in the te
hni
alreport [22℄ 
orresponding to this paper. In parti
ular, the table provides upper boundsfor some symmetri
 3-D variants of the Hilbert indexing. Note that here we still havea signi�
ant gap between upper and lower bounds.d(i; j) (3-D) Eu
lidean maximum ManhattanGeneral lower bound 3p11:1ji� jj � p3 3p8:25ji� jj � 1 3p42:625ji� jj � 3� 2:23 3pji� jj � p3 � 2:02 3pji� jj � 1 � 3:49 3pji� jj � 3Cy
li
 lower bound 3p12:39ji� jj � p3 3p9ji� jj � 1 3p54ji� jj � 3� 2:31 3pji� jj � p3 � 2:08 3pji� jj � 1 � 3:77 3pji� jj � 3U. bd. 3-D Hil. (a) 3p33:2ji� jj 3p29:2ji� jj 3p98:4ji� jj� 3:22 3pji� jj � 3:08 3pji� jj � 4:62 3pji� jjU. bd. 3-D Hil. (b,
) 3p34:2ji� jj 3p30:0ji� jj 3p112:1ji� jj� 3:25 3pji� jj � 3:11 3pji� jj � 4:83 3pji� jjFuture workThere is a number of interesting open questions. One of these is to 
lose the gapbetween the upper and lower bound for non-
y
li
 2-D indexings and, in parti
ular, for3-D indexings.Me
hani
al inspe
tion methods will play an important role in investigating otherindexings in parti
ular for higher dimensions and for more 
ompli
ated 
onstru
tionrules. The inspe
tion methods themselves 
an be re�ned in various ways. They 
an beadapted to indexing s
hemes whi
h are not based on 
ombining 
ubi
 elements if weuse a top-down de
omposition rather than a bottom-up de
omposition. For example,for some 
onstant k0, an H-indexing of size 2k � 2k 
ould be partitioned into 2 � 4k0triangles of area 2k�k0�1 without �xing k. The 
onstru
tion prin
iple for the H-
urve8On modern parallel ma
hines, good lo
ality has mainly the indire
t e�e
t of in
reasing the usablebandwidth whereas the laten
y due to the distan
e in the network is negligible 
ompared to otheroverheads. So is would also be interesting to study bandwidth dire
tly.25
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then de�nes a (
y
li
) path traversing all the triangles. Thus, a 
omputer 
an 
ount thenumber of triangles on the (shortest) H-path between any two triangles. The algorithm
an also be made faster by adaptively re�ning only those segments where 
omputationsfor small k0 
ould not rule out high diameter segments.Initial work 
on
erning the study of stru
tural and 
ombinatorial properties ofHilbert indexings in higher dimensions heas re
ently begun [2℄. In parti
ular, it is
learly pointed out what 
hara
terizes an r-dimensional Hilbert 
urve for arbitrary r �2.A
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