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Abstract. Connectivity augmentation problems ask for adding a set of
at most k edges whose insertion makes a given graph satisfy a speci-
fied connectivity property, such as bridge-connectivity or biconnectivity.
We show that, for bridge-connectivity and biconnectivity, the respective
connectivity augmentation problems admit problem kernels with O(k2)
vertices and links. Moreover, we study partial connectivity augmentation
problems, naturally generalizing connectivity augmentation problems.
Here, we do not require that, after adding the edges, the entire graph
should satisfy the connectivity property, but a large subgraph. In this set-
ting, two polynomial-time solvable connectivity augmentation problems
behave differently, namely, the partial biconnectivity augmentation prob-
lem remains polynomial-time solvable whereas the partial strong connec-
tivity augmentation problem becomes W[2]-hard with respect to k.

1 Introduction

Connectivity augmentation problems on undirected and directed graphs have as
input a graph G = (V, E), a set E′ of edges, and a non-negative integer k, and
ask for a set E′′ of at most k edges from E′ such that (V, E ∪ E′′) satisfies a
specified connectivity property. The edges in E′ are called the links. Eswaran
and Tarjan [2] introduced connectivity augmentation problems and described
their numerous applications.

We use G = (V, E) and D = (V, A) to denote undirected and directed graphs.
A path from vertex u1 to vertex ul in G = (V, E) (or D = (V, A)) is a sequence of
edges {u1, u2}, {u2, u3}, . . ., {ul−1, ul} (or arcs (u1, u2), (u2, u3), . . ., (ul−1, ul)).
A cycle is a path with u1 = ul.

A vertex u in an undirected graph is called a cut-vertex if there are two ver-
tices v, w with v �= u and w �= u such that every path from v to w contains u.
If an undirected graph G is connected and has no cut-vertex, then G is bicon-
nected. A bridge in an undirected graph is an edge {u, v} such that every path
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between u and v contains {u, v}. If G is connected and has no bridge, then G
is bridge-connected. A directed graph D = (V, A) is strongly connected if, for
all pairs of vertices u and v, there is a path from u to v. The connected (bicon-
nected, bridge-connected, strongly connected) components of a graph are its max-
imal connected (biconnected, bridge-connected, strongly connected) subgraphs.
We consider here two connectivity augmentation problems, namely, Bridge-

Connectivity Augmentation (BCA) and Biconnectivity Augmentation

(BIA), where we are asked to add at most k links to make the given graph bridge-
connected or biconnected.

There is a long history of research dealing with BCA and BIA starting in
1976 with the work of Eswaran and Tarjan [2]. They showed that, in the case
that E′ is complete, that is, graph (V, E′) is a complete graph, both problems
are polynomial-time solvable. In 1981, Frederickson and JáJá [4] proved the
NP-completeness of both problems if E′ is incomplete. Motivated by the NP-
completeness, the approximability of the optimization versions of these problems
has been extensively studied in the literature. Frederickson and JáJá [4] gave
polynomial-time factor-2 approximation algorithms for both problems. For BCA,
Nagamochi [8] improved the approximation factor to 1.875. Later, Even et al. [3]
presented a factor-1.5 approximation algorithm for BCA. In case of BIA, Khuller
and Thurimella [5] improved the running time of the factor-2 approximation
algorithm in [4]. In an unpublished manuscript, Kortsarz and Nutov [7] claimed
a polynomial-time factor- 12

7 algorithm for BIA. On the negative site, Kortsarz et
al. [6] proved that there exists an ε > 0 for which it is NP-hard to approximate
BCA and BIA within a factor of 1 + ε.

Concerning the parameterized complexity of these problems, we are only
aware of one result due to Nagamochi [8]. Since the bridge-connected components
of a graph form a tree, we may assume that the input graph of a BCA-instance is
a tree by contracting these components. Nagamochi [8] showed that BCA is fixed-
parameter tractable with respect to the number of leaves � in the given tree. More
precisely, there is an algorithm solving this problem in O(��+1 log � · (|V |+ |E′|))
time. Since the number of leaves provides a lower bound on the solution size k,
BCA is fixed-parameter tractable with respect to k. Nothing has been known
concerning the kernelization of these problems. Problem kernelization is one of
the most important contributions of fixed-parameter algorithmics to practical
computing [1,9]. A kernelization is a polynomial-time algorithm that transforms
a given instance I with parameter k of a problem P into a new instance I ′

with parameter k′ ≤ k of P such that the original instance I is a yes-instance
with parameter k iff the new instance I ′ is a yes-instance with parameter k′

and |I ′| ≤ g(k) for a function g. The instance I ′ is called the problem kernel. We
complement the result of Nagamochi with a problem kernel with O(k2) vertices
and links for BCA and BIA.

Furthermore, we study partial connectivity augmentation problems, a nat-
ural generalization of the connectivity augmentation problems, where we have
as input a graph G = (V, E), a set E′ of links, and two non-negative integers k, Φ
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and ask for a subset E′′ of E′ with |E′′| ≤ k such that graph (V, E ∪ E′′) has
a subgraph that contains at least Φ vertices and satisfies the given connectiv-
ity property. Clearly, if Φ = |V |, then we have the connectivity augmentation
problems. We consider two partial connectivity augmentation problems, Par-

tial Bridge-Connectivity Augmentation and Partial Strong Connec-

tivity Augmentation. For both connectivity properties, their corresponding
non-partial connectivity augmentation problems are solvable in polynomial-time
if E′ is complete [2]. We show in Sect. 5 that Partial Bridge-Connectivity

Augmentation with a complete link set remains polynomial-time solvable but
Partial Strong Connectivity Augmentation with a complete link set
is W[2]-hard, that is, it is very unlikely that this problem is fixed-parameter
tractable with respect to the parameter k.

Most proofs are deferred to a long version of this paper.

2 Preliminaries

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems [1,9]. One dimension is the input size n (as
in classical complexity theory) and the other one the parameter k (usually a
positive integer). A problem is called fixed-parameter tractable (fpt) if it can be
solved in f(k)·nO(1) time, where f is a computable function only depending on k.
A core tool in the development of fixed-parameter algorithms is polynomial-time
preprocessing by data reduction rules, often yielding a kernelization. Herein, the
goal is, given any problem instance I with parameter k, to transform it in poly-
nomial time into a new instance I ′ with parameter k′ such that the size of I ′ is
bounded from above by some function only depending on k, k′ ≤ k, and (I, k)
is a yes-instance iff (I ′, k′) is a yes-instance. A data reduction rule is correct if
the new instance after an application of this rule is a yes-instance iff the original
instance is a yes-instance. Throughout this paper, we call a problem instance
reduced if the corresponding data reduction rules cannot be applied anymore.
A formal framework to show fixed-parameter intractability was developed by
Downey and Fellows [1] who introduced the concept of parameterized reduc-
tions. A parameterized reduction from a parameterized language L to another
parameterized language L′ is a function that, given an instance (I, k), computes
in f(k) · nO(1) time an instance (I ′, k′) (with k′ only depending on k) such that
(I, k) ∈ L ⇔ (I ′, k′) ∈ L′. The basic complexity class for fixed-parameter in-
tractability is W[1] as there is good reason to believe that W[1]-hard problems
are not fixed-parameter tractable [1].

Throughout this paper, we set n := |V | and m := |E′| for a given graph G =
(V, E) and a given link set E′. For a graph G, we also use V (G) and E(G)
to denote its vertex and edge set, respectively. The neighborhood N(v) of a
vertex v ∈ V is the set of vertices that are adjacent to v. The degree of a
vertex v, denoted by deg(v), is the size of N(v).
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Fig. 1. Example of contracting bridge-connected components of a given graph. The
links are drawn as dashed lines.

3 The Bridge-Connectivity Augmentation Problem

The main result of this section is a data reduction for Bridge-Connectivity

Augmentation that leads to a quadratic-size problem kernel. Given an instance
of BCA, we can assume that the input graph G is a tree [2,4,3]: Each bridge-
connected component of G = (V, E) can be contracted into a single vertex by
contracting all edges in this component, resulting in a tree. The set of links has
to be adapted accordingly. The contraction of the bridge-connected components
can be done in O(|V | + |E|) time [11]. See Fig. 1 for an example. Hence, in the
following, the input instance is always denoted by T .

In contrast to the tree edges, denoted by {u, v}, we denote links by (u, v).
We use pu,v to denote the uniquely determined path between two vertices u
and v in T . In the course of the data reduction process, if a link (u, v) ∈ E′

is added to a solution E′′, then the vertices from the path pu,v form a bridge-
connected component and we contract all edges in this component, obtaining
a tree again. We say a link (u, v) covers an edge e if e lies on pu,v. For an
edge e ∈ E, we use l(e) to denote the set of links covering e. A link (u, v) ∈ E′

is called a shadow if there exists a link (u′, v′) ∈ E′ with V (pu,v) � V (pu′,v′).
Let NE′(u) := {v | (u, v) ∈ E′}. For a vertex v ∈ V and an edge e ∈ E, we
use Tv,e to denote the subtree of (V, E \ {e}) that contains v.

The following observation provides the starting point for our kernelization:

Lemma 1 ([2]). Let L(T ) be the set of leaves of the tree T of a BCA-instance.
Every solution of this instance contains at least |L(T )|/2 many links, that is,
k ≥ |L(T )|/2.

We can conclude that every yes-instance of BCA contains at most 2k leaves and,
also, at most 2k − 1 internal vertices with degree at least three. It remains to
upper-bound the number of internal vertices of degree two. If we can bound the
maximum length of the paths that consist solely of degree-2 vertices, then we
can achieve an upper bound on the number of degree-2 vertices. To this end, we
apply four data reduction rules. We begin with three data reduction rules that
are also used in [3,8] and whose correctness is easy to verify.
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Shadow Deletion: Delete all shadows in E′.
Unit Link: If there is an edge e ∈ E with l(e) = {(u, v)}, then contract pu,v

and decrease the parameter k by one.
Covered Edge: If l(e1) ⊆ l(e2) for two edges e1, e2 ∈ E, then contract e2.

Lemma 2. The above three rules can be executed in O(n · m3 + n3 · m) time.

Before we present the fourth data reduction rule, we show some structural prop-
erties of a BCA-instance that is reduced with respect to the above three rules. In
particular, we show that, in a reduced instance, the links over a path consisting
solely of degree-2 vertices have some “consecutiveness” property, which provides
the basis for the fourth data reduction rule.

Lemma 3. Let (T = (V, E), E′, k) be a reduced instance with respect to the
above three rules, let v ∈ V be a degree-2 vertex in T , and let e, e′ be the edges
incident to v. Then, there exists at least one link (v, x) in E′ with x ∈ V (Tv,e)
and at least one link (v, y) in E′ with y ∈ V (Tv,e′).

Lemma 4. Let (T = (V, E), E′, k) be a reduced instance with respect to the
above three rules. Then, for every link (u, v) ∈ E′, it holds that |E(pu,v)| ≥ 2.

Lemma 5. Let (T = (V, E), E′, k) be a reduced instance with respect to the above
three rules. Consider a path P = {u, v1}, {v1, v2}, . . . , {vl, w} in T with deg(vi) =
2 for all 1 ≤ i ≤ l, deg(u) ≥ 3, and deg(w) ≥ 3. Let E′

v denote the set of links
with both endpoints in {v1, v2, . . . , vl}. If E′

v �= ∅, then there exists an integer N
with 1 ≤ N ≤ l − 1 such that E′

v = {(vi, vi+N ) | 1 ≤ i ≤ l − N} and there exists
no link (x, y) with x ∈ V (Tu,{u,v1}) and y ∈ V (Tw,{vl,w}).

The fourth data reduction rule restricts the length of paths that consist solely
of degree-2 vertices. By Lemma 5, the links with both endpoints from such a
path admit a “consecutiveness” property. By making use of this property, the
next data reduction rule replaces a long degree-2 path by a shorter “equivalent”
degree-2 path.

Degree-2-Path: Let (T = (V, E), E′, k) be a reduced instance with respect
to the above three rules. Let P = {u, v1}, {v1, v2}, . . . , {vl, w} be a path in T
such that deg(vi) = 2 for all 1 ≤ i ≤ l, deg(u) ≥ 3, and deg(w) ≥ 3 and
let E′

v denote the set of links with both endpoints from v1, v2, . . . , vl. If there
exists an integer N with l ≥ 2N such that E′

v = {(vi, vi+N ) | 1 ≤ i ≤ l − N},
then proceed as follows: Let c := 
 l

N � − 1 and d := (l mod N). Replace P by
a path P ′ = {u, x1}, {x1, x2}, . . . , {xN+d, w}. Remove all links in E′

v from E′

and add the links (xi, xi+N ) for 1 ≤ i ≤ d to E′. Replace every link (vi, y)
with y ∈ V (Tu,{u,v1}) by the link (xi, y) and replace every link (vi, y) with y ∈
V (Tw,{vl,w}) by the link (xN+d−(l−i), y). Finally, decrease parameter k by c.

See Fig. 2 for an example of the application of the Degree-2-Path rule.

Lemma 6. The Degree-2-Path rule is correct and can be executed in O(n2+nm)
time.
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Fig. 2. Example for the Degree-2-Path rule for N = 3, l = 11, c = 2, and d = 2

Proof. Let (T = (V, E), E′, k) be a BCA-instance reduced with respect to the
first three rules and let (Ta, E′

a, ka) be the resulting instance after one application
of the Degree-2-Path rule. Let P = {u, v1}, {v1, v2}, . . . , {vl, w} be the path for
which the conditions of the Degree-2-Path rule are fulfilled and let E′

v be the
set of links with both endpoints from v1, . . . , vl. By Lemma 5, either E′

v = ∅
or there is an integer N with E′

v = {(vi, vN+i) | 1 ≤ i ≤ l − N} and there is
no link between a vertex in V (Tu,{u,v1}) and a vertex in V (Tw,{vl,w}). Since the
Degree-2-Path rule is applicable to P , we know E′

v �= ∅ and l ≥ 2N . Then, we
have c = 
 l

N � − 1, d = (l mod N), and ka = k − c. We show that (T, E′, k)
is a yes-instance if and only if (Ta, E′

a, ka) is a yes-instance. The correctness of
the Degree-2-Path rule then follows by induction on the number of applications
of the rule. Here, we give only the proof of “⇒”-direction. The proofs of “⇐”-
direction and the running time are omitted due to lack of space.

“⇒”: Let E′′ ⊆ E′ with |E′′| ≤ k be a solution for the original instance. We
first show some properties of E′′ ∩ E′

v and then construct a solution E′′
a for the

new instance with |E′′
a | ≤ ka from E′′.

We can assume that E′′ ∩ E′
v contains only pairwise “non-overlapping” links,

that is, there are no two links (vi, vi+N ), (vj , vj+N ) ∈ E′′∩E′
v with i < j < i+N :

If there are two links (vi, vi+N ), (vj , vj+N ) ∈ E′′ ∩ E′
v with i < j < i + N , then

we construct another solution from E′′ by replacing (vj , vj+N ) by (vi+N , z),
where z = vi+2N or z is a vertex from Tw,{vl,w}. Link (vi+N , z) exists due to
Lemma 3. Obviously, this yields a solution of the same size (or even of smaller
size if (vi+N , z) is already part of the solution).

Next, we show that c ≤ |E′′ ∩ E′
v| ≤ c + 1. On the one hand, since every

link in E′
v covers exactly N edges and the links in E′′ ∩ E′

v are pairwise non-
overlapping, there can be at most 
 l−1

N � = 
 (c+1)N+d−1
N � = c + 1 pairwise non-

overlapping links in E′′ ∩ E′
v. On the other hand, all edges of path P which

lie between vertex vN and vertex vl−N+1 have to be covered by links in E′
v.

This means that E′′ has cardinality at least � l−2N+1
N � = � (c+1)N+d−2N+1

N � =
(c − 1) + �d+1

N � = c.
In the following, let il := max{i | (y, vi) ∈ E′′ ∧ y ∈ V (Tu,{u,v1})} and ir :=

min{i | (vi, z) ∈ E′′ ∧ z ∈ V (Tw,{vl,w})}. We distinguish two cases, namely,
|E′′ ∩ E′

v| = c and |E′′ ∩ E′
v| = c + 1, and construct in both cases a solution for

the new instance.
In the first case, we can assume that E′′ ∩E′

v = {(vil
, vil+N ), (vil+N , vil+2N ),

. . ., (vil+(c−1)N , vil+cN )}. We construct the new solution E′′
a from E′′ as fol-

lows: We replace every link (y, vi) ∈ E′′ by a link (y, xi). Note that, since the
given instance is reduced with respect to the first three rules, the existence
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of the link (y, vi) implies that i < N ≤ N + d and, thus, the link (y, xi)
exists in E′

a. The links (vi, z) ∈ E′′ with z ∈ V (Tw,{vl,w}) are also replaced
by links (xN+d−(l−i), z). With the same reason as above, links (xi, z) exist
in E′

a. Finally, we remove all links in E′′ ∩ E′
v from E′′. The resulting set E′′

a

is then a solution for the new instance. Since |E′′ ∩ E′
v| = c in this case, we

have |E′′
a | ≤ ka. Obviously, all edges of Ta that are not between the new ver-

tices x1, . . . , xN+d are covered. To show that the edges between the new ver-
tices are also covered, observe that the edges on the path between x1 and xil

and the edges on the path between xN+d−(l−ir) and xN+d are covered by the
links (y, xil

) with y ∈ V (Tu,{u,v1}) and (xN+d−(l−ir), z) with z ∈ V (Tw,{vl,w})
that replace the links (y, vil

) and (vir , z), respectively. Then, it suffices to show
that N + d− (l − ir) ≤ il. Since E′′ is a solution of the non-reduced instance, we
get il + cN ≥ ir. This is equivalent to il ≥ ir − cN = N + d − cN − N − d + ir =
N + d − (l − ir).

In the second case, we assume that E′′ ∩ E′
v = {(vil

, vil+N ), (vil+N , vil+2N ),
. . ., (vil+cN , vil+(c+1)N )}. We construct the solution E′′

a for the new instance
from E′′ as follows: We replace every link (y, vi) ∈ E′′ with y ∈ V (Tu,{u,v1}) by
a link (y, xi). The links (vi, z) ∈ E′′ with z ∈ V (Tw,{vl,w}) are also replaced by
links (xN+d−(l−i), z). We remove all links in E′′ ∩ E′

v from E′′. Finally, we add
link (xil

, xil+N ) to E′′. With a similar argument, we can show that the resulting
set is a solution of the new instance. ��

Next, we show that a BCA-instance reduced with respect to the four data re-
duction rules has O(k2) vertices and O(k2) links. The key point in the following
is to upper-bound the number of the internal vertices with degree two. Herein,
we consider the paths formed by degree-two vertices. The next two lemmas are
used to show the upper bounds on the number and the length of such paths.
The first one is due to Even et al. [3] and shows that there is no such degree-two
vertex path between a leaf and an internal vertex of degree at least three.

Lemma 7 ([3]). Let (T, E′, k) be a BCA-instance to which the Shadow Deletion
rule, the Unit Link rule, and the Covered Edge rule cannot be applied. Let v be
a leaf of T and u be the parent of v. Then, deg(u) ≥ 3.

In the next lemma, we upper-bound the length of a path in a reduced instance
that consists of degree-two vertices. Herein, we use L(T ) to denote the set of
leaves in tree T .

Lemma 8. Let (T, E′, k) be a reduced BCA-instance and let P ={u, v1}, {v1, v2},
. . ., {vl, w} be a path in T with deg(u) ≥ 3, deg(w) ≥ 3, and deg(vi) = 2 for
all 1 ≤ i ≤ l. Let Lu := L(Tu,{u,v1}) and Lw := L(Tw,{vl,w}). Then,

(1) there are at most 2|Lu|+2|Lw| links that have exactly one endpoint in VP :=
{v1, v2, . . . , vl}.
(2) l ≤ 4 · min(|Lu|, |Lw|).
Proof. In the following, we use Tu and Tw to denote Tu,{u,v1} and Tw,{vl,w},
respectively, and consider them as two rooted trees with roots u and w, respec-
tively. For a vertex x in Tu or Tw, we use Tx to denote the subtree of Tu or Tw
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rooted at x. Moreover, we use Au and Aw to denote the set of internal vertices
of degree at least 3 in Tu and Tw.

The key for proving the lemma is the following observation: There exist at
most |Au| + |Lu| links in E′ with one endpoint in Tu and one endpoint in VP

and there exist at most |Aw| + |Lw| links in E′ with one endpoint in Tw and
one endpoint in VP . Here, we prove this observation for Tu. Consider a degree-2
vertex x in Tu. By Lemma 3, there exists a link (x, y) ∈ E′ with y ∈ V (Tx).
The existence of the link (x, y) then excludes any link (a, b) with a ∈ V (Ty)
and b ∈ VP , since, otherwise, (x, y) would be a shadow and the Shadow Deletion
rule would be applied. In this way, every degree-2 vertex x in Tu “blocks” at
least one vertex from Tx from building links with the vertices in VP . Thus, by
a simple calculation, we arrive at the |Au| + |Lu|-bound on the number of links
between the vertices in Tu and the vertices in VP .

From the above observation, we know that there are at most |Au| + |Lu| +
|Aw| + |Lw| links with exactly one endpoint in VP . Since |Au| ≤ |Lu| − 1
and |Aw| ≤ |Lw| − 1, the first part of the lemma follows.

To prove the second part of the lemma, we distinguish two cases. First, sup-
pose that there exists at least one link (x, y) ∈ E′ with x ∈ V (Tu) and y ∈ V (Tw).
Then, since the instance is reduced with respect to the Shadow Deletion rule,
there is no link in E′ between two vertices in VP . By Lemma 3, for every ver-
tex vi in VP , there are at least two links (vi, a), (vi, b) ∈ E′ with a ∈ V (Tu)
and b ∈ V (Tw). According to the above observation, there are at most 2|Lu| − 1
(or 2|Lw| − 1) links between VP -vertices and the vertices in V (Tu) (or V (Tw)).
Therefore, |VP | ≤ min(2|Lu| − 1, 2|Lw| − 1).

In the second case, there is no link (x, y) ∈ E′ with x ∈ V (Tu) and y ∈ V (Tw).
Let vil

be the vertex in VP such that there exist a link (vil
, z) ∈ E′ with z ∈

V (Tu) and, for all il ≤ i ≤ l, there is no link (vi, z) ∈ E′ with z ∈ V (Tu). From
the above observation, we know il ≤ 2|Lu|−1. By Lemma 3 and the fact that the
instance is reduced with respect to the Degree-2-Path rule, for every vertex vi

with il ≤ i ≤ l, there is a link (vi, vj) ∈ E′ with 1 ≤ j ≤ il. Since the instance is
reduced with respect to the Shadow Deletion rule, there cannot be two vertices
from {vil+1, . . . , vl} which form two links with one vertex from {v1, . . . , vil

}, we
can conclude l ≤ 2il ≤ 4|Lu| − 2. Obviously, the same argument can also be
applied to obtain l ≤ 4|Lw| − 2. The second part of the lemma follows. ��

Now, we prove the size bound of the problem kernel for BCA.

Theorem 1. Bridge-Connectivity Augmentation admits a problem ker-
nel with O(k2) vertices and O(k2) links.

4 The Biconnectivity Augmentation Problem

In this section, by studying Biconnectivity Augmentation (BIA), we deal
with a more general problem setting than in the previous section. Hence, based on
the previous section, we extend and refine our kernelization technique introduced
there. As shown by Frederickson and JáJá [4], we can assume that the input
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Fig. 3. A graph together with its block tree. The cut-vertices are colored gray and the
block-vertices are drawn as rectangles.

graph is a so-called block tree. A block tree T = (VT , ET ) is a tree over the
vertex set VT := B ∪C with B ∩C = ∅ where the leaves of T form a subset of B
and the edges in ET have one endpoint from B and one endpoint from C.

We can easily compute a block tree from a given undirected and connected
graph G = (V, E): Identify B as the set of biconnected components of G and C
as the set of cut-vertices of G. Insert an edge between a biconnected component
and a cut-vertex into ET if the cut-vertex belongs to the biconnected component.
In the following, the vertices in B are called block-vertices and the vertices in C
are called cut-vertices. See Fig. 3 for an example of a graph and its block tree.

Eswaran and Tarjan [2] gave a lower bound on the size of the solutions of a
BIA-instance.

Lemma 9 ([2]). If (T, E′, k) is a yes-instance of BIA, then k ≥ �|L|/2� where L
is the set of leaves of T .

By Lemma 9, the number of leaves and the number of internal vertices of degree
at least three of a given block tree can be easily bounded from above by 2k
and 2k − 1. Again, we focus on the internal vertices of degree two of T . The
decisive difference between a BIA-instance and a BCA-instance lies in the parti-
tion of the tree vertices into two subsets, the block-vertices and the cut-vertices.
A block-vertex can only have cut-vertices as neighbors and vice versa. In the
following, we present first a preprocessing, which ensures that the links in E′ are
all between block-vertices.

Preprocessing: While there exists a link (u, v) ∈ E′ with u ∈ C and v ∈ B∪C,
replace (u, v) by the link (w, v) where w ∈ B is the neighbor of u that lies on
the path between u and v in T . Finally, for all u ∈ B ∪C, remove all links (u, u)
from E′.

To see the correctness of the preprocessing, the following equivalent formula-
tion of BIA is helpful: Given a block tree T = (B ∪C, ET ), a set of links E′, and
a non-negative integer k, find a subset E′′ of links with |E′′| ≤ k such that, for
every c ∈ C, if c is removed from the graph (B ∪C, ET ∪E′′), then the resulting
graph is still connected.

Lemma 10. The preprocessing is correct and can be executed in O(n · m) time.
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Fig. 4. An illustration of the modification made after adding a link (u, v) to the solution
set

Next, we present the data reduction rules for BIA which generalize the data
reduction rules in Sect. 3. Herein, if we add a link (u, v) to the solution E′′,
then, following Rosenthal and Goldner [10], we modify the instance as follows:
Let P denote the path in T between u, v, let C be the set of cut-vertices on P
that have degree at least three, and let N be the set of cut-vertices which are
neighbors of the block-vertices in P and do not lie on P . Replace P by a single
block-vertex K. Every link (u, v) with at least one endpoint being in P , say u,
is replaced by link (K, v). For every vertex v ∈ N , add edge {K, v} and, for
every c ∈ C, add edge {K, c}. An illustration is given in Fig. 4.

The data reduction rules use the following terms and notations: For a vertex u,
we use E′

u to denote the links in E′ which cover u or have u as one of its endpoints.
We call a path between two cut vertices a degree-2-cut-path if all vertices on this
path are degree-two vertices. A degree-2-cut-path is maximal if it is not a proper
subpath of another degree-2-cut-path.

Shadow Deletion: Delete all shadows.
Unit Link: If there exists a cut-vertex u with E′

u = {(x, y)}, then add (x, y)
to E′′ and decrease the parameter k by one.
Covered Cut-Vertex: If there are two cut-vertices u and v with E′

u ⊆ E′
v

and N(v) = {w1, w2}, then add a new block-vertex w and make it adjacent to
the vertices in (N(w1) ∪ N(w2)) \ {v} and replace every link of the form (w1, x)
or (w2, x) by a link (w, x). Finally, remove v, w1, w2 from T .
Degree-2-Cut-Path: Let (T, E′, k) be a BIA-instance to which the first three
rules do not apply, let P = {c1, b1}, {b1, c2}, {c2, b2}, . . ., {cl, bl}, {bl, cl+1} be a
maximal degree-2-cut-path in T with {b1, . . . , bl} ⊆ B and {c1, . . . , cl+1} ⊆ C,
and E′

b be the set of links with both endpoints from {b1, . . . , bl}. If there exists
an integer N with 2N ≤ l such that E′

b = {(bi, bi+N ) | 1 ≤ i ≤ l − N},
then proceed as follows: Let c := 
 l

N � − 1 and d = l mod N . Replace P by a
path P ′ = {c′1, b′1}, . . . , {c′N+d, b

′
N+d}, {b′N+d, c

′
N+d+1}. Remove all links in E′

b

from E′ and add links (b′i, b
′
i+N ) for 1 ≤ i ≤ d to E′. Replace every link (bi, y)

with y ∈ V (Tb1,{b1,c1}) by link (b′i, y) and replace every link (bi, y) with y ∈
V (Tbl,{cl−1,bl}) by link (b′N+d−(l−i), y). Finally, decrease the parameter k by c.

Due to the similarity of the four rules to the ones in Sect. 3, the running time
follows from Lemmas 2 and 6.
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Lemma 11. The four data reduction rules are correct and can be executed
in O(n · m3 + n3 · m) time.

Theorem 2. Biconnectivity Augmentation admits a problem kernel
with O(k2) vertices and O(k2) links.

5 Partial Augmentation Problems

In this section, we study partial augmentation problems. Here, given a graph, a
set of links, and two non-negative integers Φ, k, one asks for a set of at most k
links whose insertion in the graph results in a graph that has a subgraph with
at least Φ vertices that satisfies a given connectivity property. We show that, in
the case that the link set is complete, that is, it contains all possible edges or
arcs, Partial Bridge-Connectivity Augmentation (PBCA) is polynomial-
time solvable and Partial Strong Connectivity Augmentation (PSCA) is
W[2]-hard. Note that the non-partial versions of both problems are polynomial-
time solvable if the link set is complete.

5.1 Partial Bridge-Connectivity Augmentation

The Partial Bridge-Connectivity Augmentation problem (PBCA) we
study here is defined as follows: Given an undirected and connected graph G =
(V, E), a set of links E′, and two non-negative integers Φ, k, find a set E′′ of
at most k links such that the graph (V, E ∪ E′′) contains a bridge-connected
component with at least Φ vertices. Note that in the case that E′ is incomplete,
Bridge-Connectivity Augmentation is NP-complete, which implies that
PBCA is also NP-complete in this case. We show here that PBCA becomes
polynomial-time solvable if E′ is complete. This extends a result by Eswaran
and Tarjan [2] saying that BCA is polynomial-time solvable in the case of a
complete link set. Our solving strategy consists of two steps: The first step
reduces the augmentation problem to a special subtree problem and the second
step applies a dynamic programming approach to solve the subtree problem. The
special subtree problem, Maximum d-Leaves Subtree (MLST), is defined as
follows: Given a tree T = (VT , ET ), two non-negative integers N, d, and a weight
function w : VT → N, find a subtree of T with at most d leaves such that the
total weight of the vertices in this subtree is at least N .

Theorem 3. Maximum d-Leaves Subtree can be solved in O(|VT | ·d2) time.

Theorem 4. In the case of a complete link set, Partial Bridge-Connectivity

Augmentation is solvable in O(|V | · k2) time.

5.2 Partial Strong Connectivity Augmentation

Now, we show that Partial Strong Connectivity Augmentation (PSCA)
is W[2]-hard, which is defined as follows: Given a directed graph D = (V, A), a
set of links A′ ⊆ V ×V , and two non-negative integers Φ, k, find a subset A′′ of A′
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with |A′′| ≤ k such that (V, A ∪ A′′) contains a strongly connected component
with at least Φ vertices. We give a parameterized reduction from the W[2]-hard
Set Cover problem [1].

Theorem 5. In both incomplete and complete link set cases, Partial Strong

Connectivity Augmentation is W[2]-hard.

6 Open Problems

The most interesting open problem is to study the parameterized complexity of
the Strong Connectivity Augmentation problem, where we are given a di-
rected graph D = (V, A), a set of links A � V ×V , and a non-negative integer k
and ask for a subset A′′ of links such that graph (V, A∪A′′) is strongly connected.
We conjecture that this problem is fixed-parameter tractable with respect to k.
Improving the size bounds of the problem kernels for Bridge-Connectivity

Augmentation and Biconnectivity Augmentation to a linear function in k
is another interesting open problem. Further opportunities for future work in-
clude investigating the approximability and fixed-parameter tractability of the
Partial Bridge-Connectivity Augmentation and Partial Biconnec-

tivity Augmentation problems for the case that the link set E′ is incomplete.
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